\left\{ \begin{array} { l } { x + 2 y = - 18 } \\ { 3 x - y = - 1 } \end{array} \right.
حل مسائل x، y
x = -\frac{20}{7} = -2\frac{6}{7} \approx -2.857142857
y = -\frac{53}{7} = -7\frac{4}{7} \approx -7.571428571
رسم بياني
مشاركة
تم النسخ للحافظة
x+2y=-18,3x-y=-1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x+2y=-18
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=-2y-18
اطرح 2y من طرفي المعادلة.
3\left(-2y-18\right)-y=-1
عوّض عن x بالقيمة -2y-18 في المعادلة الأخرى، 3x-y=-1.
-6y-54-y=-1
اضرب 3 في -2y-18.
-7y-54=-1
اجمع -6y مع -y.
-7y=53
أضف 54 إلى طرفي المعادلة.
y=-\frac{53}{7}
قسمة طرفي المعادلة على -7.
x=-2\left(-\frac{53}{7}\right)-18
عوّض عن y بالقيمة -\frac{53}{7} في x=-2y-18. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{106}{7}-18
اضرب -2 في -\frac{53}{7}.
x=-\frac{20}{7}
اجمع -18 مع \frac{106}{7}.
x=-\frac{20}{7},y=-\frac{53}{7}
تم إصلاح النظام الآن.
x+2y=-18,3x-y=-1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18\\-1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}1&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-1\end{matrix}\right))\left(\begin{matrix}-18\\-1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-18\right)+\frac{2}{7}\left(-1\right)\\\frac{3}{7}\left(-18\right)-\frac{1}{7}\left(-1\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{7}\\-\frac{53}{7}\end{matrix}\right)
إجراء الحساب.
x=-\frac{20}{7},y=-\frac{53}{7}
استخرج عنصري المصفوفة x وy.
x+2y=-18,3x-y=-1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x+3\times 2y=3\left(-18\right),3x-y=-1
لجعل x و3x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 3 وكل حدود طرفي المعادلة الثانية في 1.
3x+6y=-54,3x-y=-1
تبسيط.
3x-3x+6y+y=-54+1
اطرح 3x-y=-1 من 3x+6y=-54 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
6y+y=-54+1
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
7y=-54+1
اجمع 6y مع y.
7y=-53
اجمع -54 مع 1.
y=-\frac{53}{7}
قسمة طرفي المعادلة على 7.
3x-\left(-\frac{53}{7}\right)=-1
عوّض عن y بالقيمة -\frac{53}{7} في 3x-y=-1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
3x=-\frac{60}{7}
اطرح \frac{53}{7} من طرفي المعادلة.
x=-\frac{20}{7}
قسمة طرفي المعادلة على 3.
x=-\frac{20}{7},y=-\frac{53}{7}
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}