\left\{ \begin{array} { l } { 6 x + 5 y = 1 } \\ { x - y = 2 } \end{array} \right.
حل مسائل x، y
x=1
y=-1
رسم بياني
مشاركة
تم النسخ للحافظة
6x+5y=1,x-y=2
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
6x+5y=1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
6x=-5y+1
اطرح 5y من طرفي المعادلة.
x=\frac{1}{6}\left(-5y+1\right)
قسمة طرفي المعادلة على 6.
x=-\frac{5}{6}y+\frac{1}{6}
اضرب \frac{1}{6} في -5y+1.
-\frac{5}{6}y+\frac{1}{6}-y=2
عوّض عن x بالقيمة \frac{-5y+1}{6} في المعادلة الأخرى، x-y=2.
-\frac{11}{6}y+\frac{1}{6}=2
اجمع -\frac{5y}{6} مع -y.
-\frac{11}{6}y=\frac{11}{6}
اطرح \frac{1}{6} من طرفي المعادلة.
y=-1
اقسم طرفي المعادلة على -\frac{11}{6}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=-\frac{5}{6}\left(-1\right)+\frac{1}{6}
عوّض عن y بالقيمة -1 في x=-\frac{5}{6}y+\frac{1}{6}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{5+1}{6}
اضرب -\frac{5}{6} في -1.
x=1
اجمع \frac{1}{6} مع \frac{5}{6} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=-1
تم إصلاح النظام الآن.
6x+5y=1,x-y=2
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}6&5\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}6&5\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6\left(-1\right)-5}&-\frac{5}{6\left(-1\right)-5}\\-\frac{1}{6\left(-1\right)-5}&\frac{6}{6\left(-1\right)-5}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{5}{11}\\\frac{1}{11}&-\frac{6}{11}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}+\frac{5}{11}\times 2\\\frac{1}{11}-\frac{6}{11}\times 2\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
إجراء الحساب.
x=1,y=-1
استخرج عنصري المصفوفة x وy.
6x+5y=1,x-y=2
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
6x+5y=1,6x+6\left(-1\right)y=6\times 2
لجعل 6x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 6.
6x+5y=1,6x-6y=12
تبسيط.
6x-6x+5y+6y=1-12
اطرح 6x-6y=12 من 6x+5y=1 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
5y+6y=1-12
اجمع 6x مع -6x. حذف الحدين 6x و-6x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
11y=1-12
اجمع 5y مع 6y.
11y=-11
اجمع 1 مع -12.
y=-1
قسمة طرفي المعادلة على 11.
x-\left(-1\right)=2
عوّض عن y بالقيمة -1 في x-y=2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
اطرح 1 من طرفي المعادلة.
x=1,y=-1
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}