تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

3x-y=6,5x+y=10
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
3x-y=6
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
3x=y+6
أضف y إلى طرفي المعادلة.
x=\frac{1}{3}\left(y+6\right)
قسمة طرفي المعادلة على 3.
x=\frac{1}{3}y+2
اضرب \frac{1}{3} في y+6.
5\left(\frac{1}{3}y+2\right)+y=10
عوّض عن x بالقيمة \frac{y}{3}+2 في المعادلة الأخرى، 5x+y=10.
\frac{5}{3}y+10+y=10
اضرب 5 في \frac{y}{3}+2.
\frac{8}{3}y+10=10
اجمع \frac{5y}{3} مع y.
\frac{8}{3}y=0
اطرح 10 من طرفي المعادلة.
y=0
اقسم طرفي المعادلة على \frac{8}{3}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=2
عوّض عن y بالقيمة 0 في x=\frac{1}{3}y+2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2,y=0
تم إصلاح النظام الآن.
3x-y=6,5x+y=10
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\10\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}3&-1\\5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}3&-1\\5&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&1\end{matrix}\right))\left(\begin{matrix}6\\10\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-5\right)}&-\frac{-1}{3-\left(-5\right)}\\-\frac{5}{3-\left(-5\right)}&\frac{3}{3-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\-\frac{5}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\10\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 10\\-\frac{5}{8}\times 6+\frac{3}{8}\times 10\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
إجراء الحساب.
x=2,y=0
استخرج عنصري المصفوفة x وy.
3x-y=6,5x+y=10
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
5\times 3x+5\left(-1\right)y=5\times 6,3\times 5x+3y=3\times 10
لجعل 3x و5x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 5 وكل حدود طرفي المعادلة الثانية في 3.
15x-5y=30,15x+3y=30
تبسيط.
15x-15x-5y-3y=30-30
اطرح 15x+3y=30 من 15x-5y=30 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-5y-3y=30-30
اجمع 15x مع -15x. حذف الحدين 15x و-15x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-8y=30-30
اجمع -5y مع -3y.
-8y=0
اجمع 30 مع -30.
y=0
قسمة طرفي المعادلة على -8.
5x=10
عوّض عن y بالقيمة 0 في 5x+y=10. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=2
قسمة طرفي المعادلة على 5.
x=2,y=0
تم إصلاح النظام الآن.