تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

3x-4y=-1,x-6y=-5
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
3x-4y=-1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
3x=4y-1
أضف 4y إلى طرفي المعادلة.
x=\frac{1}{3}\left(4y-1\right)
قسمة طرفي المعادلة على 3.
x=\frac{4}{3}y-\frac{1}{3}
اضرب \frac{1}{3} في 4y-1.
\frac{4}{3}y-\frac{1}{3}-6y=-5
عوّض عن x بالقيمة \frac{4y-1}{3} في المعادلة الأخرى، x-6y=-5.
-\frac{14}{3}y-\frac{1}{3}=-5
اجمع \frac{4y}{3} مع -6y.
-\frac{14}{3}y=-\frac{14}{3}
أضف \frac{1}{3} إلى طرفي المعادلة.
y=1
اقسم طرفي المعادلة على -\frac{14}{3}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{4-1}{3}
عوّض عن y بالقيمة 1 في x=\frac{4}{3}y-\frac{1}{3}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
اجمع -\frac{1}{3} مع \frac{4}{3} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=1
تم إصلاح النظام الآن.
3x-4y=-1,x-6y=-5
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}3&-4\\1&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\1&-6\end{matrix}\right))\left(\begin{matrix}-1\\-5\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-\left(-4\right)}&-\frac{-4}{3\left(-6\right)-\left(-4\right)}\\-\frac{1}{3\left(-6\right)-\left(-4\right)}&\frac{3}{3\left(-6\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{2}{7}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\-5\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)-\frac{2}{7}\left(-5\right)\\\frac{1}{14}\left(-1\right)-\frac{3}{14}\left(-5\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
إجراء الحساب.
x=1,y=1
استخرج عنصري المصفوفة x وy.
3x-4y=-1,x-6y=-5
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x-4y=-1,3x+3\left(-6\right)y=3\left(-5\right)
لجعل 3x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 3.
3x-4y=-1,3x-18y=-15
تبسيط.
3x-3x-4y+18y=-1+15
اطرح 3x-18y=-15 من 3x-4y=-1 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-4y+18y=-1+15
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
14y=-1+15
اجمع -4y مع 18y.
14y=14
اجمع -1 مع 15.
y=1
قسمة طرفي المعادلة على 14.
x-6=-5
عوّض عن y بالقيمة 1 في x-6y=-5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
أضف 6 إلى طرفي المعادلة.
x=1,y=1
تم إصلاح النظام الآن.