تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

3x-2y=13,x+2y=-1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
3x-2y=13
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
3x=2y+13
أضف 2y إلى طرفي المعادلة.
x=\frac{1}{3}\left(2y+13\right)
قسمة طرفي المعادلة على 3.
x=\frac{2}{3}y+\frac{13}{3}
اضرب \frac{1}{3} في 2y+13.
\frac{2}{3}y+\frac{13}{3}+2y=-1
عوّض عن x بالقيمة \frac{2y+13}{3} في المعادلة الأخرى، x+2y=-1.
\frac{8}{3}y+\frac{13}{3}=-1
اجمع \frac{2y}{3} مع 2y.
\frac{8}{3}y=-\frac{16}{3}
اطرح \frac{13}{3} من طرفي المعادلة.
y=-2
اقسم طرفي المعادلة على \frac{8}{3}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{2}{3}\left(-2\right)+\frac{13}{3}
عوّض عن y بالقيمة -2 في x=\frac{2}{3}y+\frac{13}{3}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{-4+13}{3}
اضرب \frac{2}{3} في -2.
x=3
اجمع \frac{13}{3} مع -\frac{4}{3} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=3,y=-2
تم إصلاح النظام الآن.
3x-2y=13,x+2y=-1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}3&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\-\frac{1}{8}\times 13+\frac{3}{8}\left(-1\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
إجراء الحساب.
x=3,y=-2
استخرج عنصري المصفوفة x وy.
3x-2y=13,x+2y=-1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
3x-2y=13,3x+3\times 2y=3\left(-1\right)
لجعل 3x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 3.
3x-2y=13,3x+6y=-3
تبسيط.
3x-3x-2y-6y=13+3
اطرح 3x+6y=-3 من 3x-2y=13 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-2y-6y=13+3
اجمع 3x مع -3x. حذف الحدين 3x و-3x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-8y=13+3
اجمع -2y مع -6y.
-8y=16
اجمع 13 مع 3.
y=-2
قسمة طرفي المعادلة على -8.
x+2\left(-2\right)=-1
عوّض عن y بالقيمة -2 في x+2y=-1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x-4=-1
اضرب 2 في -2.
x=3
أضف 4 إلى طرفي المعادلة.
x=3,y=-2
تم إصلاح النظام الآن.