\left\{ \begin{array} { l } { 3 x + 2 y = 7 } \\ { 4 x - 3 y = - 2 } \end{array} \right.
حل مسائل x، y
x=1
y=2
رسم بياني
مشاركة
تم النسخ للحافظة
3x+2y=7,4x-3y=-2
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
3x+2y=7
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
3x=-2y+7
اطرح 2y من طرفي المعادلة.
x=\frac{1}{3}\left(-2y+7\right)
قسمة طرفي المعادلة على 3.
x=-\frac{2}{3}y+\frac{7}{3}
اضرب \frac{1}{3} في -2y+7.
4\left(-\frac{2}{3}y+\frac{7}{3}\right)-3y=-2
عوّض عن x بالقيمة \frac{-2y+7}{3} في المعادلة الأخرى، 4x-3y=-2.
-\frac{8}{3}y+\frac{28}{3}-3y=-2
اضرب 4 في \frac{-2y+7}{3}.
-\frac{17}{3}y+\frac{28}{3}=-2
اجمع -\frac{8y}{3} مع -3y.
-\frac{17}{3}y=-\frac{34}{3}
اطرح \frac{28}{3} من طرفي المعادلة.
y=2
اقسم طرفي المعادلة على -\frac{17}{3}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=-\frac{2}{3}\times 2+\frac{7}{3}
عوّض عن y بالقيمة 2 في x=-\frac{2}{3}y+\frac{7}{3}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{-4+7}{3}
اضرب -\frac{2}{3} في 2.
x=1
اجمع \frac{7}{3} مع -\frac{4}{3} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=2
تم إصلاح النظام الآن.
3x+2y=7,4x-3y=-2
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-2\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}3&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}3&2\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&-3\end{matrix}\right))\left(\begin{matrix}7\\-2\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-2\times 4}&-\frac{2}{3\left(-3\right)-2\times 4}\\-\frac{4}{3\left(-3\right)-2\times 4}&\frac{3}{3\left(-3\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\\frac{4}{17}&-\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}7\\-2\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\times 7+\frac{2}{17}\left(-2\right)\\\frac{4}{17}\times 7-\frac{3}{17}\left(-2\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
إجراء الحساب.
x=1,y=2
استخرج عنصري المصفوفة x وy.
3x+2y=7,4x-3y=-2
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
4\times 3x+4\times 2y=4\times 7,3\times 4x+3\left(-3\right)y=3\left(-2\right)
لجعل 3x و4x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 4 وكل حدود طرفي المعادلة الثانية في 3.
12x+8y=28,12x-9y=-6
تبسيط.
12x-12x+8y+9y=28+6
اطرح 12x-9y=-6 من 12x+8y=28 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
8y+9y=28+6
اجمع 12x مع -12x. حذف الحدين 12x و-12x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
17y=28+6
اجمع 8y مع 9y.
17y=34
اجمع 28 مع 6.
y=2
قسمة طرفي المعادلة على 17.
4x-3\times 2=-2
عوّض عن y بالقيمة 2 في 4x-3y=-2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
4x-6=-2
اضرب -3 في 2.
4x=4
أضف 6 إلى طرفي المعادلة.
x=1
قسمة طرفي المعادلة على 4.
x=1,y=2
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}