\left\{ \begin{array} { l } { 2 x - y = 6 } \\ { x + y = - 3 } \end{array} \right.
حل مسائل x، y
x=1
y=-4
رسم بياني
مشاركة
تم النسخ للحافظة
2x-y=6,x+y=-3
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x-y=6
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=y+6
أضف y إلى طرفي المعادلة.
x=\frac{1}{2}\left(y+6\right)
قسمة طرفي المعادلة على 2.
x=\frac{1}{2}y+3
اضرب \frac{1}{2} في y+6.
\frac{1}{2}y+3+y=-3
عوّض عن x بالقيمة \frac{y}{2}+3 في المعادلة الأخرى، x+y=-3.
\frac{3}{2}y+3=-3
اجمع \frac{y}{2} مع y.
\frac{3}{2}y=-6
اطرح 3 من طرفي المعادلة.
y=-4
اقسم طرفي المعادلة على \frac{3}{2}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=\frac{1}{2}\left(-4\right)+3
عوّض عن y بالقيمة -4 في x=\frac{1}{2}y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-2+3
اضرب \frac{1}{2} في -4.
x=1
اجمع 3 مع -2.
x=1,y=-4
تم إصلاح النظام الآن.
2x-y=6,x+y=-3
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{2}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 6+\frac{1}{3}\left(-3\right)\\-\frac{1}{3}\times 6+\frac{2}{3}\left(-3\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
إجراء الحساب.
x=1,y=-4
استخرج عنصري المصفوفة x وy.
2x-y=6,x+y=-3
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x-y=6,2x+2y=2\left(-3\right)
لجعل 2x وx متساويين، اضرب كل حدود طرفي المعادلة الأولى في 1 وكل حدود طرفي المعادلة الثانية في 2.
2x-y=6,2x+2y=-6
تبسيط.
2x-2x-y-2y=6+6
اطرح 2x+2y=-6 من 2x-y=6 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-y-2y=6+6
اجمع 2x مع -2x. حذف الحدين 2x و-2x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-3y=6+6
اجمع -y مع -2y.
-3y=12
اجمع 6 مع 6.
y=-4
قسمة طرفي المعادلة على -3.
x-4=-3
عوّض عن y بالقيمة -4 في x+y=-3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=1
أضف 4 إلى طرفي المعادلة.
x=1,y=-4
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}