تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x-y=3,x-y=-1
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x-y=3
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=y+3
أضف y إلى طرفي المعادلة.
x=\frac{1}{2}\left(y+3\right)
قسمة طرفي المعادلة على 2.
x=\frac{1}{2}y+\frac{3}{2}
اضرب \frac{1}{2} في y+3.
\frac{1}{2}y+\frac{3}{2}-y=-1
عوّض عن x بالقيمة \frac{3+y}{2} في المعادلة الأخرى، x-y=-1.
-\frac{1}{2}y+\frac{3}{2}=-1
اجمع \frac{y}{2} مع -y.
-\frac{1}{2}y=-\frac{5}{2}
اطرح \frac{3}{2} من طرفي المعادلة.
y=5
ضرب طرفي المعادلة في -2.
x=\frac{1}{2}\times 5+\frac{3}{2}
عوّض عن y بالقيمة 5 في x=\frac{1}{2}y+\frac{3}{2}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{5+3}{2}
اضرب \frac{1}{2} في 5.
x=4
اجمع \frac{3}{2} مع \frac{5}{2} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=4,y=5
تم إصلاح النظام الآن.
2x-y=3,x-y=-1
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-1\right)}&-\frac{-1}{2\left(-1\right)-\left(-1\right)}\\-\frac{1}{2\left(-1\right)-\left(-1\right)}&\frac{2}{2\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-\left(-1\right)\\3-2\left(-1\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
إجراء الحساب.
x=4,y=5
استخرج عنصري المصفوفة x وy.
2x-y=3,x-y=-1
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x-x-y+y=3+1
اطرح x-y=-1 من 2x-y=3 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
2x-x=3+1
اجمع -y مع y. حذف الحدين -y وy، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
x=3+1
اجمع 2x مع -x.
x=4
اجمع 3 مع 1.
4-y=-1
عوّض عن x بالقيمة 4 في x-y=-1. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
-y=-5
اطرح 4 من طرفي المعادلة.
x=4,y=5
تم إصلاح النظام الآن.