\left\{ \begin{array} { l } { 2 x + y = 6 } \\ { 4 x - y = 7 } \end{array} \right.
حل مسائل x، y
x = \frac{13}{6} = 2\frac{1}{6} \approx 2.166666667
y = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
رسم بياني
مشاركة
تم النسخ للحافظة
2x+y=6,4x-y=7
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+y=6
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-y+6
اطرح y من طرفي المعادلة.
x=\frac{1}{2}\left(-y+6\right)
قسمة طرفي المعادلة على 2.
x=-\frac{1}{2}y+3
اضرب \frac{1}{2} في -y+6.
4\left(-\frac{1}{2}y+3\right)-y=7
عوّض عن x بالقيمة -\frac{y}{2}+3 في المعادلة الأخرى، 4x-y=7.
-2y+12-y=7
اضرب 4 في -\frac{y}{2}+3.
-3y+12=7
اجمع -2y مع -y.
-3y=-5
اطرح 12 من طرفي المعادلة.
y=\frac{5}{3}
قسمة طرفي المعادلة على -3.
x=-\frac{1}{2}\times \frac{5}{3}+3
عوّض عن y بالقيمة \frac{5}{3} في x=-\frac{1}{2}y+3. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-\frac{5}{6}+3
اضرب -\frac{1}{2} في \frac{5}{3} بضرب البسط في البسط والمقام في المقام. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=\frac{13}{6}
اجمع 3 مع -\frac{5}{6}.
x=\frac{13}{6},y=\frac{5}{3}
تم إصلاح النظام الآن.
2x+y=6,4x-y=7
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&1\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 6+\frac{1}{6}\times 7\\\frac{2}{3}\times 6-\frac{1}{3}\times 7\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{6}\\\frac{5}{3}\end{matrix}\right)
إجراء الحساب.
x=\frac{13}{6},y=\frac{5}{3}
استخرج عنصري المصفوفة x وy.
2x+y=6,4x-y=7
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
4\times 2x+4y=4\times 6,2\times 4x+2\left(-1\right)y=2\times 7
لجعل 2x و4x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 4 وكل حدود طرفي المعادلة الثانية في 2.
8x+4y=24,8x-2y=14
تبسيط.
8x-8x+4y+2y=24-14
اطرح 8x-2y=14 من 8x+4y=24 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
4y+2y=24-14
اجمع 8x مع -8x. حذف الحدين 8x و-8x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
6y=24-14
اجمع 4y مع 2y.
6y=10
اجمع 24 مع -14.
y=\frac{5}{3}
قسمة طرفي المعادلة على 6.
4x-\frac{5}{3}=7
عوّض عن y بالقيمة \frac{5}{3} في 4x-y=7. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
4x=\frac{26}{3}
أضف \frac{5}{3} إلى طرفي المعادلة.
x=\frac{13}{6}
قسمة طرفي المعادلة على 4.
x=\frac{13}{6},y=\frac{5}{3}
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}