\left\{ \begin{array} { l } { 2 x + y = - 1 } \\ { 3 x + y = 0 } \end{array} \right.
حل مسائل x، y
x=1
y=-3
رسم بياني
مشاركة
تم النسخ للحافظة
2x+y=-1,3x+y=0
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+y=-1
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x=-y-1
اطرح y من طرفي المعادلة.
x=\frac{1}{2}\left(-y-1\right)
قسمة طرفي المعادلة على 2.
x=-\frac{1}{2}y-\frac{1}{2}
اضرب \frac{1}{2} في -y-1.
3\left(-\frac{1}{2}y-\frac{1}{2}\right)+y=0
عوّض عن x بالقيمة \frac{-y-1}{2} في المعادلة الأخرى، 3x+y=0.
-\frac{3}{2}y-\frac{3}{2}+y=0
اضرب 3 في \frac{-y-1}{2}.
-\frac{1}{2}y-\frac{3}{2}=0
اجمع -\frac{3y}{2} مع y.
-\frac{1}{2}y=\frac{3}{2}
أضف \frac{3}{2} إلى طرفي المعادلة.
y=-3
ضرب طرفي المعادلة في -2.
x=-\frac{1}{2}\left(-3\right)-\frac{1}{2}
عوّض عن y بالقيمة -3 في x=-\frac{1}{2}y-\frac{1}{2}. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=\frac{3-1}{2}
اضرب -\frac{1}{2} في -3.
x=1
اجمع -\frac{1}{2} مع \frac{3}{2} من خلال إيجاد مقام مشترك وإضافة البسط. بعد ذلك، اختزل الكسر إلى أبسط قيمة إذا كان ذلك ممكناً.
x=1,y=-3
تم إصلاح النظام الآن.
2x+y=-1,3x+y=0
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\0\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1\\0\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}-1\\0\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-1\right)\\3\left(-1\right)\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
إجراء الحساب.
x=1,y=-3
استخرج عنصري المصفوفة x وy.
2x+y=-1,3x+y=0
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x-3x+y-y=-1
اطرح 3x+y=0 من 2x+y=-1 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
2x-3x=-1
اجمع y مع -y. حذف الحدين y و-y، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-x=-1
اجمع 2x مع -3x.
x=1
قسمة طرفي المعادلة على -1.
3+y=0
عوّض عن x بالقيمة 1 في 3x+y=0. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
y=-3
اطرح 3 من طرفي المعادلة.
x=1,y=-3
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}