تجاوز إلى المحتوى الرئيسي
حل مسائل x، y
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

2x+3y-4=0,x+3y=5
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
2x+3y-4=0
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
2x+3y=4
أضف 4 إلى طرفي المعادلة.
2x=-3y+4
اطرح 3y من طرفي المعادلة.
x=\frac{1}{2}\left(-3y+4\right)
قسمة طرفي المعادلة على 2.
x=-\frac{3}{2}y+2
اضرب \frac{1}{2} في -3y+4.
-\frac{3}{2}y+2+3y=5
عوّض عن x بالقيمة -\frac{3y}{2}+2 في المعادلة الأخرى، x+3y=5.
\frac{3}{2}y+2=5
اجمع -\frac{3y}{2} مع 3y.
\frac{3}{2}y=3
اطرح 2 من طرفي المعادلة.
y=2
اقسم طرفي المعادلة على \frac{3}{2}، وذلك يساوي ضرب الطرفين في مقلوب الكسر.
x=-\frac{3}{2}\times 2+2
عوّض عن y بالقيمة 2 في x=-\frac{3}{2}y+2. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=-3+2
اضرب -\frac{3}{2} في 2.
x=-1
اجمع 2 مع -3.
x=-1,y=2
تم إصلاح النظام الآن.
2x+3y-4=0,x+3y=5
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}2&3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}2&3\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&3\end{matrix}\right))\left(\begin{matrix}4\\5\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3}&-\frac{3}{2\times 3-3}\\-\frac{1}{2\times 3-3}&\frac{2}{2\times 3-3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}4\\5\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4-5\\-\frac{1}{3}\times 4+\frac{2}{3}\times 5\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
إجراء الحساب.
x=-1,y=2
استخرج عنصري المصفوفة x وy.
2x+3y-4=0,x+3y=5
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
2x-x+3y-3y-4=-5
اطرح x+3y=5 من 2x+3y-4=0 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
2x-x-4=-5
اجمع 3y مع -3y. حذف الحدين 3y و-3y، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
x-4=-5
اجمع 2x مع -x.
x=-1
أضف 4 إلى طرفي المعادلة.
-1+3y=5
عوّض عن x بالقيمة -1 في x+3y=5. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة y مباشرةً.
3y=6
أضف 1 إلى طرفي المعادلة.
x=-1,y=2
تم إصلاح النظام الآن.