\left\{ \begin{array} { c } { x - 4 y = - 13 } \\ { 6 x + 4 y = 6 } \end{array} \right.
حل مسائل x، y
x=-1
y=3
رسم بياني
مشاركة
تم النسخ للحافظة
x-4y=-13,6x+4y=6
لحل زوج من المعادلات باستخدام التعويض، أولاً قم بحل إحدى المعادلات لأحد المتغيرات. ثم عوّض ناتج هذا المتغير في المعادلة الأخرى.
x-4y=-13
اختر أحدى المعادلات وأوجد قيمة x بعزل x على يسار علامة التساوي.
x=4y-13
أضف 4y إلى طرفي المعادلة.
6\left(4y-13\right)+4y=6
عوّض عن x بالقيمة 4y-13 في المعادلة الأخرى، 6x+4y=6.
24y-78+4y=6
اضرب 6 في 4y-13.
28y-78=6
اجمع 24y مع 4y.
28y=84
أضف 78 إلى طرفي المعادلة.
y=3
قسمة طرفي المعادلة على 28.
x=4\times 3-13
عوّض عن y بالقيمة 3 في x=4y-13. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
x=12-13
اضرب 4 في 3.
x=-1
اجمع -13 مع 12.
x=-1,y=3
تم إصلاح النظام الآن.
x-4y=-13,6x+4y=6
اجعل المعادلات في الصيغة العامة ثم استخدم المصفوفات لحل نظام المعادلات.
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\6\end{matrix}\right)
اكتب المعادلات في شكل مصفوفة.
inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
قم بضرب المعادلة من اليمين بمصفوفة معكوسة لـ \left(\begin{matrix}1&-4\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
ناتج أي مصفوفة وعكسها هو مصفوفة المحايدة.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
اضرب المصفوفات من الجانب الأيسر من علامة التساوي.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-4\times 6\right)}&-\frac{-4}{4-\left(-4\times 6\right)}\\-\frac{6}{4-\left(-4\times 6\right)}&\frac{1}{4-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
بالنسبة إلى المصفوفة 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)، تكون المصفوفة المعكوسة \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، لذا يمكن إعادة كتابة معادلة المصفوفة كمشكلة ضرب مصفوفة.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{14}&\frac{1}{28}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
إجراء الحساب.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-13\right)+\frac{1}{7}\times 6\\-\frac{3}{14}\left(-13\right)+\frac{1}{28}\times 6\end{matrix}\right)
اضرب المصفوفات.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
إجراء الحساب.
x=-1,y=3
استخرج عنصري المصفوفة x وy.
x-4y=-13,6x+4y=6
لحل المعادلات بالحذف، يجب أن تتماثل معاملات أحد المتغيرات في المعادلتين بحيث يتم اختصار المتغير عند طرح إحدى المعادلتين من الأخرى.
6x+6\left(-4\right)y=6\left(-13\right),6x+4y=6
لجعل x و6x متساويين، اضرب كل حدود طرفي المعادلة الأولى في 6 وكل حدود طرفي المعادلة الثانية في 1.
6x-24y=-78,6x+4y=6
تبسيط.
6x-6x-24y-4y=-78-6
اطرح 6x+4y=6 من 6x-24y=-78 عن طريق طرح الحدود المتشابهة على جانبي علامة التساوي.
-24y-4y=-78-6
اجمع 6x مع -6x. حذف الحدين 6x و-6x، لتصبح المعادلة بمتغير واحد فقط يمكن حله.
-28y=-78-6
اجمع -24y مع -4y.
-28y=-84
اجمع -78 مع -6.
y=3
قسمة طرفي المعادلة على -28.
6x+4\times 3=6
عوّض عن y بالقيمة 3 في 6x+4y=6. لأن المعادلة الناتجة تحتوي على متغير واحد فقط، يمكنك إيجاد قيمة x مباشرةً.
6x+12=6
اضرب 4 في 3.
6x=-6
اطرح 12 من طرفي المعادلة.
x=-1
قسمة طرفي المعادلة على 6.
x=-1,y=3
تم إصلاح النظام الآن.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}