تجاوز إلى المحتوى الرئيسي
تقييم
Tick mark Image

مسائل مماثلة من البحث في الويب

مشاركة

\int _{0}^{8}-133x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
اضرب x في x لتحصل على x^{2}.
\int _{0}^{8}\frac{-133\left(-1\right)}{12}x^{2}\mathrm{d}x
التعبير عن -133\left(-\frac{1}{12}\right) ككسر فردي.
\int _{0}^{8}\frac{133}{12}x^{2}\mathrm{d}x
اضرب -133 في -1 لتحصل على 133.
\int \frac{133x^{2}}{12}\mathrm{d}x
تقدير قيمة التكامل الأول غير المحدد.
\frac{133\int x^{2}\mathrm{d}x}{12}
تحليل الثابت باستخدام \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{133x^{3}}{36}
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{2}\mathrm{d}x مع \frac{x^{3}}{3}.
\frac{133}{36}\times 8^{3}-\frac{133}{36}\times 0^{3}
التكامل المحدد هو أنتيديريفاتيفي التعبير الذي تم تقييمه في الحد الأعلى للتكامل مطروحا منه الأنتيديريفاتيفي تقييمه في الحد الأدنى للتكامل.
\frac{17024}{9}
تبسيط.