تقييم
0.76
مشاركة
تم النسخ للحافظة
\int _{0}^{2}\left(0.36x-0.05x^{2}\right)x\mathrm{d}x
استخدم خاصية التوزيع لضرب -3.6x+0.5x^{2} في -0.1.
\int _{0}^{2}0.36x^{2}-0.05x^{3}\mathrm{d}x
استخدم خاصية التوزيع لضرب 0.36x-0.05x^{2} في x.
\int \frac{9x^{2}}{25}-\frac{x^{3}}{20}\mathrm{d}x
تقدير قيمة التكامل الأول غير المحدد.
\int \frac{9x^{2}}{25}\mathrm{d}x+\int -\frac{x^{3}}{20}\mathrm{d}x
تكامل مجموعة القيم مع القيم.
\frac{9\int x^{2}\mathrm{d}x}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
تحليل الثابت في كل القيم.
\frac{3x^{3}}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{2}\mathrm{d}x مع \frac{x^{3}}{3}. اضرب 0.36 في \frac{x^{3}}{3}.
\frac{3x^{3}}{25}-\frac{x^{4}}{80}
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{3}\mathrm{d}x مع \frac{x^{4}}{4}. اضرب -0.05 في \frac{x^{4}}{4}.
\frac{3}{25}\times 2^{3}-\frac{2^{4}}{80}-\left(\frac{3}{25}\times 0^{3}-\frac{0^{4}}{80}\right)
التكامل المحدد هو أنتيديريفاتيفي التعبير الذي تم تقييمه في الحد الأعلى للتكامل مطروحا منه الأنتيديريفاتيفي تقييمه في الحد الأدنى للتكامل.
\frac{19}{25}
تبسيط.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}