تقييم
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x+С
تفاضل w.r.t. x
\left(x^{2}+2\right)^{3}
مشاركة
تم النسخ للحافظة
\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
استخدم نظرية ثنائية الحد \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} لتوسيع \left(x^{2}+2\right)^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
لرفع أس عدد ما إلى أس آخر، اضرب قيم الأسس. اضرب 2 في 3 للحصول على 6.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
لرفع أس عدد ما إلى أس آخر، اضرب قيم الأسس. اضرب 2 في 2 للحصول على 4.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
تكامل مجموعة القيم مع القيم.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
تحليل الثابت في كل القيم.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{6}\mathrm{d}x مع \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{4}\mathrm{d}x مع \frac{x^{5}}{5}. اضرب 6 في \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
بما ان \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 ، استبدل \int x^{2}\mathrm{d}x مع \frac{x^{3}}{3}. اضرب 12 في \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
ابحث عن تكامل 8 باستخدام جدول قاعده التكاملات الشائعة \int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
تبسيط.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
إذا كانت F\left(x\right) الخاصة ب f\left(x\right) ، سيتم F\left(x\right)+C مجموعه الأنتيديريفاتيفيس الخاصة بالf\left(x\right). لذلك ، أضف ثابت C\in \mathrm{R} تكامل إلى النتيجة.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}