حل لـ x
x>13
رسم بياني
مشاركة
تم النسخ للحافظة
\frac{2}{5}\times 3+\frac{2}{5}\left(-1\right)x+2<-2
استخدم خاصية التوزيع لضرب \frac{2}{5} في 3-x.
\frac{2\times 3}{5}+\frac{2}{5}\left(-1\right)x+2<-2
التعبير عن \frac{2}{5}\times 3 ككسر فردي.
\frac{6}{5}+\frac{2}{5}\left(-1\right)x+2<-2
اضرب 2 في 3 لتحصل على 6.
\frac{6}{5}-\frac{2}{5}x+2<-2
اضرب \frac{2}{5} في -1 لتحصل على -\frac{2}{5}.
\frac{6}{5}-\frac{2}{5}x+\frac{10}{5}<-2
تحويل 2 إلى الكسر العشري \frac{10}{5}.
\frac{6+10}{5}-\frac{2}{5}x<-2
بما أن لكل من \frac{6}{5} و\frac{10}{5} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{16}{5}-\frac{2}{5}x<-2
اجمع 6 مع 10 لتحصل على 16.
-\frac{2}{5}x<-2-\frac{16}{5}
اطرح \frac{16}{5} من الطرفين.
-\frac{2}{5}x<-\frac{10}{5}-\frac{16}{5}
تحويل -2 إلى الكسر العشري -\frac{10}{5}.
-\frac{2}{5}x<\frac{-10-16}{5}
بما أن لكل من -\frac{10}{5} و\frac{16}{5} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
-\frac{2}{5}x<-\frac{26}{5}
اطرح 16 من -10 لتحصل على -26.
x>-\frac{26}{5}\left(-\frac{5}{2}\right)
ضرب طرفي المعادلة في -\frac{5}{2}، العدد العكسي لـ -\frac{2}{5}. بما ان -\frac{2}{5} سالبه ، يتغير اتجاه المتباينة.
x>\frac{-26\left(-5\right)}{5\times 2}
ضرب -\frac{26}{5} في -\frac{5}{2} بضرب البسط في البسط والمقام في المقام.
x>\frac{130}{10}
إجراء عمليات ضرب بالكسر \frac{-26\left(-5\right)}{5\times 2}.
x>13
اقسم 130 على 10 لتحصل على 13.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}