تجاوز إلى المحتوى الرئيسي
تقييم
Tick mark Image
توسيع
Tick mark Image
رسم بياني

مسائل مماثلة من البحث في الويب

مشاركة

\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{y+3}{y-9}
تحليل عوامل y^{2}-11y+18.
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ \left(y-9\right)\left(y-2\right) وy-9 هو \left(y-9\right)\left(y-2\right). اضرب \frac{y+3}{y-9} في \frac{y-2}{y-2}.
\frac{9y+3+\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
بما أن لكل من \frac{9y+3}{\left(y-9\right)\left(y-2\right)} و\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{9y+3+y^{2}-2y+3y-6}{\left(y-9\right)\left(y-2\right)}
تنفيذ عمليات الضرب في 9y+3+\left(y+3\right)\left(y-2\right).
\frac{10y-3+y^{2}}{\left(y-9\right)\left(y-2\right)}
الجمع مثل الأعداد الموجودة في 9y+3+y^{2}-2y+3y-6.
\frac{10y-3+y^{2}}{y^{2}-11y+18}
توسيع \left(y-9\right)\left(y-2\right).
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{y+3}{y-9}
تحليل عوامل y^{2}-11y+18.
\frac{9y+3}{\left(y-9\right)\left(y-2\right)}+\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ \left(y-9\right)\left(y-2\right) وy-9 هو \left(y-9\right)\left(y-2\right). اضرب \frac{y+3}{y-9} في \frac{y-2}{y-2}.
\frac{9y+3+\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)}
بما أن لكل من \frac{9y+3}{\left(y-9\right)\left(y-2\right)} و\frac{\left(y+3\right)\left(y-2\right)}{\left(y-9\right)\left(y-2\right)} المقام نفسه، يمكنك جمعهم عن طريق جمع قيمة البسط الخاصة بهما.
\frac{9y+3+y^{2}-2y+3y-6}{\left(y-9\right)\left(y-2\right)}
تنفيذ عمليات الضرب في 9y+3+\left(y+3\right)\left(y-2\right).
\frac{10y-3+y^{2}}{\left(y-9\right)\left(y-2\right)}
الجمع مثل الأعداد الموجودة في 9y+3+y^{2}-2y+3y-6.
\frac{10y-3+y^{2}}{y^{2}-11y+18}
توسيع \left(y-9\right)\left(y-2\right).