تقييم
\frac{x}{4\left(x+1\right)}
تفاضل w.r.t. x
\frac{1}{4\left(x+1\right)^{2}}
رسم بياني
مشاركة
تم النسخ للحافظة
\frac{8x^{2}}{32x\left(x+1\right)}
تحديد عوامل التعبيرات التي لم يتم تحديد عواملها بالفعل.
\frac{x}{4\left(x+1\right)}
حذف 8x في البسط والمقام.
\frac{x}{4x+4}
توسيع التعبير.
\frac{\left(32x^{2}+32x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(8x^{2})-8x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(32x^{2}+32x^{1})}{\left(32x^{2}+32x^{1}\right)^{2}}
بالنسبة لأي دالتين قابلتين للمفاضلة، يكون مشتق حاصل قسمة الدالتين هو ضرب المقام في مشتق البسط ناقص ضرب البسط في مشتق المقام وقسمة الناتج على تربيع المقام.
\frac{\left(32x^{2}+32x^{1}\right)\times 2\times 8x^{2-1}-8x^{2}\left(2\times 32x^{2-1}+32x^{1-1}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
مشتقة متعددة الحدود هي مجموع مشتقات حدودها. ومشتقة الحد الثابت هي 0. ومشتقة ax^{n} هي nax^{n-1}.
\frac{\left(32x^{2}+32x^{1}\right)\times 16x^{1}-8x^{2}\left(64x^{1}+32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
تبسيط.
\frac{32x^{2}\times 16x^{1}+32x^{1}\times 16x^{1}-8x^{2}\left(64x^{1}+32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
اضرب 32x^{2}+32x^{1} في 16x^{1}.
\frac{32x^{2}\times 16x^{1}+32x^{1}\times 16x^{1}-\left(8x^{2}\times 64x^{1}+8x^{2}\times 32x^{0}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
اضرب 8x^{2} في 64x^{1}+32x^{0}.
\frac{32\times 16x^{2+1}+32\times 16x^{1+1}-\left(8\times 64x^{2+1}+8\times 32x^{2}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
لضرب أسس نفس الأساس، اجمع الأسس الخاصة بها.
\frac{512x^{3}+512x^{2}-\left(512x^{3}+256x^{2}\right)}{\left(32x^{2}+32x^{1}\right)^{2}}
تبسيط.
\frac{256x^{2}}{\left(32x^{2}+32x^{1}\right)^{2}}
جمع الحدود المتشابهة.
\frac{256x^{2}}{\left(32x^{2}+32x\right)^{2}}
لأي حد t، t^{1}=t.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}