تقييم
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
تفاضل w.r.t. x
-\frac{2x^{2}+28x+23}{4x^{4}+12x^{3}+x^{2}-12x+4}
رسم بياني
مشاركة
تم النسخ للحافظة
\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)}
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ 2x-1 وx+2 هو \left(2x-1\right)\left(x+2\right). اضرب \frac{3}{2x-1} في \frac{x+2}{x+2}. اضرب \frac{1}{x+2} في \frac{2x-1}{2x-1}.
\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)}
بما أن لكل من \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} و\frac{2x-1}{\left(2x-1\right)\left(x+2\right)} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)}
تنفيذ عمليات الضرب في 3\left(x+2\right)-\left(2x-1\right).
\frac{x+7}{\left(2x-1\right)\left(x+2\right)}
الجمع مثل الأعداد الموجودة في 3x+6-2x+1.
\frac{x+7}{2x^{2}+3x-2}
توسيع \left(2x-1\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}-\frac{2x-1}{\left(2x-1\right)\left(x+2\right)})
لإضافة تعبيرات أو طرحها، قم بمضاعفتها لجعل المقامات متساوية. المضاعف المشترك الأصغر لـ 2x-1 وx+2 هو \left(2x-1\right)\left(x+2\right). اضرب \frac{3}{2x-1} في \frac{x+2}{x+2}. اضرب \frac{1}{x+2} في \frac{2x-1}{2x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x+2\right)-\left(2x-1\right)}{\left(2x-1\right)\left(x+2\right)})
بما أن لكل من \frac{3\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)} و\frac{2x-1}{\left(2x-1\right)\left(x+2\right)} المقام نفسه، يمكنك طرحهما عن طريق طرح قيمة البسط الخاصة بهما.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+6-2x+1}{\left(2x-1\right)\left(x+2\right)})
تنفيذ عمليات الضرب في 3\left(x+2\right)-\left(2x-1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{\left(2x-1\right)\left(x+2\right)})
الجمع مثل الأعداد الموجودة في 3x+6-2x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+4x-x-2})
تطبيق خاصية التوزيع بضرب كل عنصر من 2x-1 في كل عنصر من x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+7}{2x^{2}+3x-2})
اجمع 4x مع -x لتحصل على 3x.
\frac{\left(2x^{2}+3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+7)-\left(x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+3x^{1}-2)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
بالنسبة لأي دالتين قابلتين للمفاضلة، يكون مشتق حاصل قسمة الدالتين هو ضرب المقام في مشتق البسط ناقص ضرب البسط في مشتق المقام وقسمة الناتج على تربيع المقام.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{1-1}-\left(x^{1}+7\right)\left(2\times 2x^{2-1}+3x^{1-1}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
مشتقة متعددة الحدود هي مجموع مشتقات حدودها. ومشتقة الحد الثابت هي 0. ومشتقة ax^{n} هي nax^{n-1}.
\frac{\left(2x^{2}+3x^{1}-2\right)x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
تبسيط.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}+7\right)\left(4x^{1}+3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
اضرب 2x^{2}+3x^{1}-2 في x^{0}.
\frac{2x^{2}x^{0}+3x^{1}x^{0}-2x^{0}-\left(x^{1}\times 4x^{1}+x^{1}\times 3x^{0}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
اضرب x^{1}+7 في 4x^{1}+3x^{0}.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{1+1}+3x^{1}+7\times 4x^{1}+7\times 3x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
لضرب أسس نفس الأساس، اجمع الأسس الخاصة بها.
\frac{2x^{2}+3x^{1}-2x^{0}-\left(4x^{2}+3x^{1}+28x^{1}+21x^{0}\right)}{\left(2x^{2}+3x^{1}-2\right)^{2}}
تبسيط.
\frac{-2x^{2}-28x^{1}-23x^{0}}{\left(2x^{2}+3x^{1}-2\right)^{2}}
جمع الحدود المتشابهة.
\frac{-2x^{2}-28x-23x^{0}}{\left(2x^{2}+3x-2\right)^{2}}
لأي حد t، t^{1}=t.
\frac{-2x^{2}-28x-23}{\left(2x^{2}+3x-2\right)^{2}}
لأي حد t ماعدا 0، t^{0}=1.
أمثلة
معادلة تربيعية
{ x } ^ { 2 } - 4 x - 5 = 0
حساب المثلثات
4 \sin \theta \cos \theta = 2 \sin \theta
معادلة خطية
y = 3x + 4
الحساب
699 * 533
المصفوفة
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
معادلة آنية
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
التفاضل
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
التكامل
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
النهايات
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}