تجاوز إلى المحتوى الرئيسي
تقييم
Tick mark Image

مسائل مماثلة من البحث في الويب

مشاركة

\frac{6}{\left(3\sqrt{17}+27\right)\times 8}
التعبير عن \frac{\frac{6}{3\sqrt{17}+27}}{8} ككسر فردي.
\frac{6}{24\sqrt{17}+216}
استخدم خاصية التوزيع لضرب 3\sqrt{17}+27 في 8.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right)}
احذف جذور مقام ال\frac{6}{24\sqrt{17}+216} بضرب البسط والمقام ب24\sqrt{17}-216.
\frac{6\left(24\sqrt{17}-216\right)}{\left(24\sqrt{17}\right)^{2}-216^{2}}
ضع في الحسبان \left(24\sqrt{17}+216\right)\left(24\sqrt{17}-216\right). يمكن تحويل عملية الضرب إلى فرق بين المربعات باستخدام القاعدة: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{24^{2}\left(\sqrt{17}\right)^{2}-216^{2}}
توسيع \left(24\sqrt{17}\right)^{2}.
\frac{6\left(24\sqrt{17}-216\right)}{576\left(\sqrt{17}\right)^{2}-216^{2}}
احسب 24 بالأس 2 لتحصل على 576.
\frac{6\left(24\sqrt{17}-216\right)}{576\times 17-216^{2}}
إيجاد مربع \sqrt{17} هو 17.
\frac{6\left(24\sqrt{17}-216\right)}{9792-216^{2}}
اضرب 576 في 17 لتحصل على 9792.
\frac{6\left(24\sqrt{17}-216\right)}{9792-46656}
احسب 216 بالأس 2 لتحصل على 46656.
\frac{6\left(24\sqrt{17}-216\right)}{-36864}
اطرح 46656 من 9792 لتحصل على -36864.
-\frac{1}{6144}\left(24\sqrt{17}-216\right)
اقسم 6\left(24\sqrt{17}-216\right) على -36864 لتحصل على -\frac{1}{6144}\left(24\sqrt{17}-216\right).
-\frac{1}{6144}\times 24\sqrt{17}-\frac{1}{6144}\left(-216\right)
استخدم خاصية التوزيع لضرب -\frac{1}{6144} في 24\sqrt{17}-216.
\frac{-24}{6144}\sqrt{17}-\frac{1}{6144}\left(-216\right)
التعبير عن -\frac{1}{6144}\times 24 ككسر فردي.
-\frac{1}{256}\sqrt{17}-\frac{1}{6144}\left(-216\right)
اختزل الكسر \frac{-24}{6144} إلى أبسط قيمة من خلال استخراج 24 وشطبه.
-\frac{1}{256}\sqrt{17}+\frac{-\left(-216\right)}{6144}
التعبير عن -\frac{1}{6144}\left(-216\right) ككسر فردي.
-\frac{1}{256}\sqrt{17}+\frac{216}{6144}
اضرب -1 في -216 لتحصل على 216.
-\frac{1}{256}\sqrt{17}+\frac{9}{256}
اختزل الكسر \frac{216}{6144} إلى أبسط قيمة من خلال استخراج 24 وشطبه.