求解 x 的值
x=\pi +2n_{3}\pi +arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})\text{, }n_{3}\in \mathrm{Z}\text{, }\exists n_{42}\in \mathrm{Z}\text{ : }\left(n_{3}>\left(-\frac{1}{2}\right)\left(\frac{1}{2}\pi +\left(-1\right)\pi n_{42}+arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})\right)\pi ^{-1}\text{ and }n_{3}<\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)\pi +\left(-1\right)\pi n_{42}+arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})\right)\pi ^{-1}\right)
x=arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{22}\text{, }n_{22}\in \mathrm{Z}\text{, }\exists n_{42}\in \mathrm{Z}\text{ : }\left(n_{42}<\left(arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{22}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }n_{42}>\left(arcSin(y\left(y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{22}+\left(-\frac{3}{2}\right)\pi \right)\pi ^{-1}\right)
求解 y 的值
y=\tan(x)
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}
图表
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}