跳到主要内容
求解 x 的值 (复数求解)
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

-2x^{2}+x=2
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
-2x^{2}+x-2=2-2
将等式的两边同时减去 2。
-2x^{2}+x-2=0
2 减去它自己得 0。
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 -2 替换 a,1 替换 b,并用 -2 替换 c。
x=\frac{-1±\sqrt{1-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
对 1 进行平方运算。
x=\frac{-1±\sqrt{1+8\left(-2\right)}}{2\left(-2\right)}
求 -4 与 -2 的乘积。
x=\frac{-1±\sqrt{1-16}}{2\left(-2\right)}
求 8 与 -2 的乘积。
x=\frac{-1±\sqrt{-15}}{2\left(-2\right)}
将 -16 加上 1。
x=\frac{-1±\sqrt{15}i}{2\left(-2\right)}
取 -15 的平方根。
x=\frac{-1±\sqrt{15}i}{-4}
求 2 与 -2 的乘积。
x=\frac{-1+\sqrt{15}i}{-4}
现在 ± 为加号时求公式 x=\frac{-1±\sqrt{15}i}{-4} 的解。 将 i\sqrt{15} 加上 -1。
x=\frac{-\sqrt{15}i+1}{4}
-1+i\sqrt{15} 除以 -4。
x=\frac{-\sqrt{15}i-1}{-4}
现在 ± 为减号时求公式 x=\frac{-1±\sqrt{15}i}{-4} 的解。 将 -1 减去 i\sqrt{15}。
x=\frac{1+\sqrt{15}i}{4}
-1-i\sqrt{15} 除以 -4。
x=\frac{-\sqrt{15}i+1}{4} x=\frac{1+\sqrt{15}i}{4}
现已求得方程式的解。
-2x^{2}+x=2
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
\frac{-2x^{2}+x}{-2}=\frac{2}{-2}
两边同时除以 -2。
x^{2}+\frac{1}{-2}x=\frac{2}{-2}
除以 -2 是乘以 -2 的逆运算。
x^{2}-\frac{1}{2}x=\frac{2}{-2}
1 除以 -2。
x^{2}-\frac{1}{2}x=-1
2 除以 -2。
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-1+\left(-\frac{1}{4}\right)^{2}
将 x 项的系数 -\frac{1}{2} 除以 2 得 -\frac{1}{4}。然后在等式两边同时加上 -\frac{1}{4} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-\frac{1}{2}x+\frac{1}{16}=-1+\frac{1}{16}
对 -\frac{1}{4} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-\frac{1}{2}x+\frac{1}{16}=-\frac{15}{16}
将 \frac{1}{16} 加上 -1。
\left(x-\frac{1}{4}\right)^{2}=-\frac{15}{16}
因数 x^{2}-\frac{1}{2}x+\frac{1}{16}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{-\frac{15}{16}}
对方程两边同时取平方根。
x-\frac{1}{4}=\frac{\sqrt{15}i}{4} x-\frac{1}{4}=-\frac{\sqrt{15}i}{4}
化简。
x=\frac{1+\sqrt{15}i}{4} x=\frac{-\sqrt{15}i+1}{4}
在等式两边同时加 \frac{1}{4}。