跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

x^{2}-5x-1600=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1600\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,-5 替换 b,并用 -1600 替换 c。
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1600\right)}}{2}
对 -5 进行平方运算。
x=\frac{-\left(-5\right)±\sqrt{25+6400}}{2}
求 -4 与 -1600 的乘积。
x=\frac{-\left(-5\right)±\sqrt{6425}}{2}
将 6400 加上 25。
x=\frac{-\left(-5\right)±5\sqrt{257}}{2}
取 6425 的平方根。
x=\frac{5±5\sqrt{257}}{2}
-5 的相反数是 5。
x=\frac{5\sqrt{257}+5}{2}
现在 ± 为加号时求公式 x=\frac{5±5\sqrt{257}}{2} 的解。 将 5\sqrt{257} 加上 5。
x=\frac{5-5\sqrt{257}}{2}
现在 ± 为减号时求公式 x=\frac{5±5\sqrt{257}}{2} 的解。 将 5 减去 5\sqrt{257}。
x=\frac{5\sqrt{257}+5}{2} x=\frac{5-5\sqrt{257}}{2}
现已求得方程式的解。
x^{2}-5x-1600=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
x^{2}-5x-1600-\left(-1600\right)=-\left(-1600\right)
在等式两边同时加 1600。
x^{2}-5x=-\left(-1600\right)
-1600 减去它自己得 0。
x^{2}-5x=1600
将 0 减去 -1600。
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=1600+\left(-\frac{5}{2}\right)^{2}
将 x 项的系数 -5 除以 2 得 -\frac{5}{2}。然后在等式两边同时加上 -\frac{5}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-5x+\frac{25}{4}=1600+\frac{25}{4}
对 -\frac{5}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-5x+\frac{25}{4}=\frac{6425}{4}
将 \frac{25}{4} 加上 1600。
\left(x-\frac{5}{2}\right)^{2}=\frac{6425}{4}
因数 x^{2}-5x+\frac{25}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{6425}{4}}
对方程两边同时取平方根。
x-\frac{5}{2}=\frac{5\sqrt{257}}{2} x-\frac{5}{2}=-\frac{5\sqrt{257}}{2}
化简。
x=\frac{5\sqrt{257}+5}{2} x=\frac{5-5\sqrt{257}}{2}
在等式两边同时加 \frac{5}{2}。