跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

a+b=-13 ab=30
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-13x+30 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,-30 -2,-15 -3,-10 -5,-6
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 30 的所有此类整数对。
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
计算每对之和。
a=-10 b=-3
该解答是总和为 -13 的对。
\left(x-10\right)\left(x-3\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=10 x=3
若要找到方程解,请解 x-10=0 和 x-3=0.
a+b=-13 ab=1\times 30=30
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx+30。 若要查找 a 和 b,请设置要解决的系统。
-1,-30 -2,-15 -3,-10 -5,-6
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 30 的所有此类整数对。
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
计算每对之和。
a=-10 b=-3
该解答是总和为 -13 的对。
\left(x^{2}-10x\right)+\left(-3x+30\right)
将 x^{2}-13x+30 改写为 \left(x^{2}-10x\right)+\left(-3x+30\right)。
x\left(x-10\right)-3\left(x-10\right)
将 x 放在第二个组中的第一个和 -3 中。
\left(x-10\right)\left(x-3\right)
通过使用分布式属性分解出共同项 x-10。
x=10 x=3
若要找到方程解,请解 x-10=0 和 x-3=0.
x^{2}-13x+30=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 30}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,-13 替换 b,并用 30 替换 c。
x=\frac{-\left(-13\right)±\sqrt{169-4\times 30}}{2}
对 -13 进行平方运算。
x=\frac{-\left(-13\right)±\sqrt{169-120}}{2}
求 -4 与 30 的乘积。
x=\frac{-\left(-13\right)±\sqrt{49}}{2}
将 -120 加上 169。
x=\frac{-\left(-13\right)±7}{2}
取 49 的平方根。
x=\frac{13±7}{2}
-13 的相反数是 13。
x=\frac{20}{2}
现在 ± 为加号时求公式 x=\frac{13±7}{2} 的解。 将 7 加上 13。
x=10
20 除以 2。
x=\frac{6}{2}
现在 ± 为减号时求公式 x=\frac{13±7}{2} 的解。 将 13 减去 7。
x=3
6 除以 2。
x=10 x=3
现已求得方程式的解。
x^{2}-13x+30=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
x^{2}-13x+30-30=-30
将等式的两边同时减去 30。
x^{2}-13x=-30
30 减去它自己得 0。
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-30+\left(-\frac{13}{2}\right)^{2}
将 x 项的系数 -13 除以 2 得 -\frac{13}{2}。然后在等式两边同时加上 -\frac{13}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-13x+\frac{169}{4}=-30+\frac{169}{4}
对 -\frac{13}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-13x+\frac{169}{4}=\frac{49}{4}
将 \frac{169}{4} 加上 -30。
\left(x-\frac{13}{2}\right)^{2}=\frac{49}{4}
因数 x^{2}-13x+\frac{169}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
对方程两边同时取平方根。
x-\frac{13}{2}=\frac{7}{2} x-\frac{13}{2}=-\frac{7}{2}
化简。
x=10 x=3
在等式两边同时加 \frac{13}{2}。