求解 x 的值
x = \frac{\sqrt{37} - 1}{2} \approx 2.541381265
x=\frac{-\sqrt{37}-1}{2}\approx -3.541381265
图表
共享
已复制到剪贴板
x^{2}+x=9
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x^{2}+x-9=9-9
将等式的两边同时减去 9。
x^{2}+x-9=0
9 减去它自己得 0。
x=\frac{-1±\sqrt{1^{2}-4\left(-9\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,1 替换 b,并用 -9 替换 c。
x=\frac{-1±\sqrt{1-4\left(-9\right)}}{2}
对 1 进行平方运算。
x=\frac{-1±\sqrt{1+36}}{2}
求 -4 与 -9 的乘积。
x=\frac{-1±\sqrt{37}}{2}
将 36 加上 1。
x=\frac{\sqrt{37}-1}{2}
现在 ± 为加号时求公式 x=\frac{-1±\sqrt{37}}{2} 的解。 将 \sqrt{37} 加上 -1。
x=\frac{-\sqrt{37}-1}{2}
现在 ± 为减号时求公式 x=\frac{-1±\sqrt{37}}{2} 的解。 将 -1 减去 \sqrt{37}。
x=\frac{\sqrt{37}-1}{2} x=\frac{-\sqrt{37}-1}{2}
现已求得方程式的解。
x^{2}+x=9
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
x^{2}+x+\left(\frac{1}{2}\right)^{2}=9+\left(\frac{1}{2}\right)^{2}
将 x 项的系数 1 除以 2 得 \frac{1}{2}。然后在等式两边同时加上 \frac{1}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}+x+\frac{1}{4}=9+\frac{1}{4}
对 \frac{1}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}+x+\frac{1}{4}=\frac{37}{4}
将 \frac{1}{4} 加上 9。
\left(x+\frac{1}{2}\right)^{2}=\frac{37}{4}
因数 x^{2}+x+\frac{1}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
对方程两边同时取平方根。
x+\frac{1}{2}=\frac{\sqrt{37}}{2} x+\frac{1}{2}=-\frac{\sqrt{37}}{2}
化简。
x=\frac{\sqrt{37}-1}{2} x=\frac{-\sqrt{37}-1}{2}
将等式的两边同时减去 \frac{1}{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}