跳到主要内容
求解 k 的值
Tick mark Image

来自 Web 搜索的类似问题

共享

a+b=1 ab=-6
若要解公式,请使用公式 k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right) k^{2}+k-6 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,6 -2,3
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -6 的所有此类整数对。
-1+6=5 -2+3=1
计算每对之和。
a=-2 b=3
该解答是总和为 1 的对。
\left(k-2\right)\left(k+3\right)
使用获取的值 \left(k+a\right)\left(k+b\right) 重写因式分解表达式。
k=2 k=-3
若要找到方程解,请解 k-2=0 和 k+3=0.
a+b=1 ab=1\left(-6\right)=-6
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 k^{2}+ak+bk-6。 若要查找 a 和 b,请设置要解决的系统。
-1,6 -2,3
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -6 的所有此类整数对。
-1+6=5 -2+3=1
计算每对之和。
a=-2 b=3
该解答是总和为 1 的对。
\left(k^{2}-2k\right)+\left(3k-6\right)
将 k^{2}+k-6 改写为 \left(k^{2}-2k\right)+\left(3k-6\right)。
k\left(k-2\right)+3\left(k-2\right)
将 k 放在第二个组中的第一个和 3 中。
\left(k-2\right)\left(k+3\right)
通过使用分布式属性分解出共同项 k-2。
k=2 k=-3
若要找到方程解,请解 k-2=0 和 k+3=0.
k^{2}+k-6=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
k=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,1 替换 b,并用 -6 替换 c。
k=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
对 1 进行平方运算。
k=\frac{-1±\sqrt{1+24}}{2}
求 -4 与 -6 的乘积。
k=\frac{-1±\sqrt{25}}{2}
将 24 加上 1。
k=\frac{-1±5}{2}
取 25 的平方根。
k=\frac{4}{2}
现在 ± 为加号时求公式 k=\frac{-1±5}{2} 的解。 将 5 加上 -1。
k=2
4 除以 2。
k=-\frac{6}{2}
现在 ± 为减号时求公式 k=\frac{-1±5}{2} 的解。 将 -1 减去 5。
k=-3
-6 除以 2。
k=2 k=-3
现已求得方程式的解。
k^{2}+k-6=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
k^{2}+k-6-\left(-6\right)=-\left(-6\right)
在等式两边同时加 6。
k^{2}+k=-\left(-6\right)
-6 减去它自己得 0。
k^{2}+k=6
将 0 减去 -6。
k^{2}+k+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
将 x 项的系数 1 除以 2 得 \frac{1}{2}。然后在等式两边同时加上 \frac{1}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
k^{2}+k+\frac{1}{4}=6+\frac{1}{4}
对 \frac{1}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
k^{2}+k+\frac{1}{4}=\frac{25}{4}
将 \frac{1}{4} 加上 6。
\left(k+\frac{1}{2}\right)^{2}=\frac{25}{4}
因数 k^{2}+k+\frac{1}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(k+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
对方程两边同时取平方根。
k+\frac{1}{2}=\frac{5}{2} k+\frac{1}{2}=-\frac{5}{2}
化简。
k=2 k=-3
将等式的两边同时减去 \frac{1}{2}。