跳到主要内容
因式分解
Tick mark Image
求值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

\left(x+1\right)\left(6x^{2}-7x+2\right)
依据“有理根定理”,多项式的所有有理根都是 \frac{p}{q} 的形式,其中,p 除以常数项 2,q 除以首项系数 6。 其中一个根为 -1。通过将多项式除以 x+1 来因式分解多项式。
a+b=-7 ab=6\times 2=12
请考虑 6x^{2}-7x+2。 通过分组对表达式进行因式分解。首先,表达式需要重写成 6x^{2}+ax+bx+2。 若要查找 a 和 b,请设置要解决的系统。
-1,-12 -2,-6 -3,-4
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 12 的所有此类整数对。
-1-12=-13 -2-6=-8 -3-4=-7
计算每对之和。
a=-4 b=-3
该解答是总和为 -7 的对。
\left(6x^{2}-4x\right)+\left(-3x+2\right)
将 6x^{2}-7x+2 改写为 \left(6x^{2}-4x\right)+\left(-3x+2\right)。
2x\left(3x-2\right)-\left(3x-2\right)
将 2x 放在第二个组中的第一个和 -1 中。
\left(3x-2\right)\left(2x-1\right)
通过使用分布式属性分解出共同项 3x-2。
\left(3x-2\right)\left(2x-1\right)\left(x+1\right)
重写完整的因式分解表达式。