求解 S 的值
S=\frac{5}{21}\approx 0.238095238
赋予值 S
S≔\frac{5}{21}
共享
已复制到剪贴板
S=\frac{2}{18}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
9 和 18 的最小公倍数是 18。将 \frac{1}{9} 和 \frac{1}{18} 转换为带分母 18 的分数。
S=\frac{2+1}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
由于 \frac{2}{18} 和 \frac{1}{18} 具有相同的分母,可通过分子相加来求和。
S=\frac{3}{18}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
2 与 1 相加,得到 3。
S=\frac{1}{6}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
通过求根和消去 3,将分数 \frac{3}{18} 降低为最简分数。
S=\frac{5}{30}+\frac{1}{30}+\frac{1}{45}+\frac{1}{63}
6 和 30 的最小公倍数是 30。将 \frac{1}{6} 和 \frac{1}{30} 转换为带分母 30 的分数。
S=\frac{5+1}{30}+\frac{1}{45}+\frac{1}{63}
由于 \frac{5}{30} 和 \frac{1}{30} 具有相同的分母,可通过分子相加来求和。
S=\frac{6}{30}+\frac{1}{45}+\frac{1}{63}
5 与 1 相加,得到 6。
S=\frac{1}{5}+\frac{1}{45}+\frac{1}{63}
通过求根和消去 6,将分数 \frac{6}{30} 降低为最简分数。
S=\frac{9}{45}+\frac{1}{45}+\frac{1}{63}
5 和 45 的最小公倍数是 45。将 \frac{1}{5} 和 \frac{1}{45} 转换为带分母 45 的分数。
S=\frac{9+1}{45}+\frac{1}{63}
由于 \frac{9}{45} 和 \frac{1}{45} 具有相同的分母,可通过分子相加来求和。
S=\frac{10}{45}+\frac{1}{63}
9 与 1 相加,得到 10。
S=\frac{2}{9}+\frac{1}{63}
通过求根和消去 5,将分数 \frac{10}{45} 降低为最简分数。
S=\frac{14}{63}+\frac{1}{63}
9 和 63 的最小公倍数是 63。将 \frac{2}{9} 和 \frac{1}{63} 转换为带分母 63 的分数。
S=\frac{14+1}{63}
由于 \frac{14}{63} 和 \frac{1}{63} 具有相同的分母,可通过分子相加来求和。
S=\frac{15}{63}
14 与 1 相加,得到 15。
S=\frac{5}{21}
通过求根和消去 3,将分数 \frac{15}{63} 降低为最简分数。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}