跳到主要内容
求解 x 的值 (复数求解)
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

5x^{2}-7x+3=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\times 3}}{2\times 5}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 5 替换 a,-7 替换 b,并用 3 替换 c。
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\times 3}}{2\times 5}
对 -7 进行平方运算。
x=\frac{-\left(-7\right)±\sqrt{49-20\times 3}}{2\times 5}
求 -4 与 5 的乘积。
x=\frac{-\left(-7\right)±\sqrt{49-60}}{2\times 5}
求 -20 与 3 的乘积。
x=\frac{-\left(-7\right)±\sqrt{-11}}{2\times 5}
将 -60 加上 49。
x=\frac{-\left(-7\right)±\sqrt{11}i}{2\times 5}
取 -11 的平方根。
x=\frac{7±\sqrt{11}i}{2\times 5}
-7 的相反数是 7。
x=\frac{7±\sqrt{11}i}{10}
求 2 与 5 的乘积。
x=\frac{7+\sqrt{11}i}{10}
现在 ± 为加号时求公式 x=\frac{7±\sqrt{11}i}{10} 的解。 将 i\sqrt{11} 加上 7。
x=\frac{-\sqrt{11}i+7}{10}
现在 ± 为减号时求公式 x=\frac{7±\sqrt{11}i}{10} 的解。 将 7 减去 i\sqrt{11}。
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
现已求得方程式的解。
5x^{2}-7x+3=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
5x^{2}-7x+3-3=-3
将等式的两边同时减去 3。
5x^{2}-7x=-3
3 减去它自己得 0。
\frac{5x^{2}-7x}{5}=-\frac{3}{5}
两边同时除以 5。
x^{2}-\frac{7}{5}x=-\frac{3}{5}
除以 5 是乘以 5 的逆运算。
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=-\frac{3}{5}+\left(-\frac{7}{10}\right)^{2}
将 x 项的系数 -\frac{7}{5} 除以 2 得 -\frac{7}{10}。然后在等式两边同时加上 -\frac{7}{10} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{3}{5}+\frac{49}{100}
对 -\frac{7}{10} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-\frac{7}{5}x+\frac{49}{100}=-\frac{11}{100}
将 \frac{49}{100} 加上 -\frac{3}{5},计算方法是寻找公分母,加上各自的分子。然后将所得分数进行约分化为最简分数。
\left(x-\frac{7}{10}\right)^{2}=-\frac{11}{100}
因数 x^{2}-\frac{7}{5}x+\frac{49}{100}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{-\frac{11}{100}}
对方程两边同时取平方根。
x-\frac{7}{10}=\frac{\sqrt{11}i}{10} x-\frac{7}{10}=-\frac{\sqrt{11}i}{10}
化简。
x=\frac{7+\sqrt{11}i}{10} x=\frac{-\sqrt{11}i+7}{10}
在等式两边同时加 \frac{7}{10}。