求解 w 的值
w=\frac{6z+11}{5}
求解 z 的值
z=\frac{5w-11}{6}
共享
已复制到剪贴板
5w=11+6z
将 6z 添加到两侧。
5w=6z+11
该公式采用标准形式。
\frac{5w}{5}=\frac{6z+11}{5}
两边同时除以 5。
w=\frac{6z+11}{5}
除以 5 是乘以 5 的逆运算。
-6z=11-5w
将方程式两边同时减去 5w。
\frac{-6z}{-6}=\frac{11-5w}{-6}
两边同时除以 -6。
z=\frac{11-5w}{-6}
除以 -6 是乘以 -6 的逆运算。
z=\frac{5w-11}{6}
11-5w 除以 -6。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}