求解 x 的值 (复数求解)
x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0.901387819+0.433012702i
x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0.901387819-0.433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0.901387819-0.433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0.901387819+0.433012702i
图表
共享
已复制到剪贴板
4x^{4}+4=5x^{2}
使用分配律将 4 乘以 x^{4}+1。
4x^{4}+4-5x^{2}=0
将方程式两边同时减去 5x^{2}。
4t^{2}-5t+4=0
将 t 替换为 x^{2}。
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 4}}{2\times 4}
ax^{2}+bx+c=0 形式的所有方程式都可以使用二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 来求解。在二次公式中,用 a 替换 4、用 -5 替换 b、用 4 替换 c。
t=\frac{5±\sqrt{-39}}{8}
完成计算。
t=\frac{5+\sqrt{39}i}{8} t=\frac{-\sqrt{39}i+5}{8}
求 ± 为加号和 ± 为减号时方程式 t=\frac{5±\sqrt{-39}}{8} 的解。
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}} x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}
由于 x=t^{2}, 解是通过对每个 t 判定 x=±\sqrt{t} 得到的。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}