求解 x 的值
x=\frac{\sqrt{39}}{3}+6\approx 8.081665999
x=-\frac{\sqrt{39}}{3}+6\approx 3.918334001
图表
共享
已复制到剪贴板
3x^{2}-36x+95=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 3\times 95}}{2\times 3}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 3 替换 a,-36 替换 b,并用 95 替换 c。
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 3\times 95}}{2\times 3}
对 -36 进行平方运算。
x=\frac{-\left(-36\right)±\sqrt{1296-12\times 95}}{2\times 3}
求 -4 与 3 的乘积。
x=\frac{-\left(-36\right)±\sqrt{1296-1140}}{2\times 3}
求 -12 与 95 的乘积。
x=\frac{-\left(-36\right)±\sqrt{156}}{2\times 3}
将 -1140 加上 1296。
x=\frac{-\left(-36\right)±2\sqrt{39}}{2\times 3}
取 156 的平方根。
x=\frac{36±2\sqrt{39}}{2\times 3}
-36 的相反数是 36。
x=\frac{36±2\sqrt{39}}{6}
求 2 与 3 的乘积。
x=\frac{2\sqrt{39}+36}{6}
现在 ± 为加号时求公式 x=\frac{36±2\sqrt{39}}{6} 的解。 将 2\sqrt{39} 加上 36。
x=\frac{\sqrt{39}}{3}+6
36+2\sqrt{39} 除以 6。
x=\frac{36-2\sqrt{39}}{6}
现在 ± 为减号时求公式 x=\frac{36±2\sqrt{39}}{6} 的解。 将 36 减去 2\sqrt{39}。
x=-\frac{\sqrt{39}}{3}+6
36-2\sqrt{39} 除以 6。
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
现已求得方程式的解。
3x^{2}-36x+95=0
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
3x^{2}-36x+95-95=-95
将等式的两边同时减去 95。
3x^{2}-36x=-95
95 减去它自己得 0。
\frac{3x^{2}-36x}{3}=-\frac{95}{3}
两边同时除以 3。
x^{2}+\left(-\frac{36}{3}\right)x=-\frac{95}{3}
除以 3 是乘以 3 的逆运算。
x^{2}-12x=-\frac{95}{3}
-36 除以 3。
x^{2}-12x+\left(-6\right)^{2}=-\frac{95}{3}+\left(-6\right)^{2}
将 x 项的系数 -12 除以 2 得 -6。然后在等式两边同时加上 -6 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-12x+36=-\frac{95}{3}+36
对 -6 进行平方运算。
x^{2}-12x+36=\frac{13}{3}
将 36 加上 -\frac{95}{3}。
\left(x-6\right)^{2}=\frac{13}{3}
因数 x^{2}-12x+36。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-6\right)^{2}}=\sqrt{\frac{13}{3}}
对方程两边同时取平方根。
x-6=\frac{\sqrt{39}}{3} x-6=-\frac{\sqrt{39}}{3}
化简。
x=\frac{\sqrt{39}}{3}+6 x=-\frac{\sqrt{39}}{3}+6
在等式两边同时加 6。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}