跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

3x+x^{2}=180
移项以使所有变量项位于左边。
3x+x^{2}-180=0
将方程式两边同时减去 180。
x^{2}+3x-180=0
重新排列多项式,将其变为标准形式。按从最高次幂到最低次幂的顺序放置项。
a+b=3 ab=-180
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+3x-180 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -180 的所有此类整数对。
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
计算每对之和。
a=-12 b=15
该解答是总和为 3 的对。
\left(x-12\right)\left(x+15\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=12 x=-15
若要找到方程解,请解 x-12=0 和 x+15=0.
3x+x^{2}=180
移项以使所有变量项位于左边。
3x+x^{2}-180=0
将方程式两边同时减去 180。
x^{2}+3x-180=0
重新排列多项式,将其变为标准形式。按从最高次幂到最低次幂的顺序放置项。
a+b=3 ab=1\left(-180\right)=-180
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx-180。 若要查找 a 和 b,请设置要解决的系统。
-1,180 -2,90 -3,60 -4,45 -5,36 -6,30 -9,20 -10,18 -12,15
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -180 的所有此类整数对。
-1+180=179 -2+90=88 -3+60=57 -4+45=41 -5+36=31 -6+30=24 -9+20=11 -10+18=8 -12+15=3
计算每对之和。
a=-12 b=15
该解答是总和为 3 的对。
\left(x^{2}-12x\right)+\left(15x-180\right)
将 x^{2}+3x-180 改写为 \left(x^{2}-12x\right)+\left(15x-180\right)。
x\left(x-12\right)+15\left(x-12\right)
将 x 放在第二个组中的第一个和 15 中。
\left(x-12\right)\left(x+15\right)
通过使用分布式属性分解出共同项 x-12。
x=12 x=-15
若要找到方程解,请解 x-12=0 和 x+15=0.
3x+x^{2}=180
移项以使所有变量项位于左边。
3x+x^{2}-180=0
将方程式两边同时减去 180。
x^{2}+3x-180=0
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,3 替换 b,并用 -180 替换 c。
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
对 3 进行平方运算。
x=\frac{-3±\sqrt{9+720}}{2}
求 -4 与 -180 的乘积。
x=\frac{-3±\sqrt{729}}{2}
将 720 加上 9。
x=\frac{-3±27}{2}
取 729 的平方根。
x=\frac{24}{2}
现在 ± 为加号时求公式 x=\frac{-3±27}{2} 的解。 将 27 加上 -3。
x=12
24 除以 2。
x=-\frac{30}{2}
现在 ± 为减号时求公式 x=\frac{-3±27}{2} 的解。 将 -3 减去 27。
x=-15
-30 除以 2。
x=12 x=-15
现已求得方程式的解。
3x+x^{2}=180
移项以使所有变量项位于左边。
x^{2}+3x=180
这样的二次方程式可通过转换为完全平方形式来求解。要化为完全平方形式,等式必须先转换为 x^{2}+bx=c 的形式。
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
将 x 项的系数 3 除以 2 得 \frac{3}{2}。然后在等式两边同时加上 \frac{3}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
对 \frac{3}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
将 \frac{9}{4} 加上 180。
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
因数 x^{2}+3x+\frac{9}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
对方程两边同时取平方根。
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
化简。
x=12 x=-15
将等式的两边同时减去 \frac{3}{2}。