1-17.945 \% -29.36 \% -4.08 \%
求值
0.48615
因式分解
\frac{3 \cdot 7 \cdot 463}{2 ^ {5} \cdot 5 ^ {4}} = 0.48615
共享
已复制到剪贴板
1-\frac{17945}{100000}-\frac{29.36}{100}-\frac{4.08}{100}
将分子和分母同时乘以 1000 以展开 \frac{17.945}{100}。
1-\frac{3589}{20000}-\frac{29.36}{100}-\frac{4.08}{100}
通过求根和消去 5,将分数 \frac{17945}{100000} 降低为最简分数。
\frac{20000}{20000}-\frac{3589}{20000}-\frac{29.36}{100}-\frac{4.08}{100}
将 1 转换为分数 \frac{20000}{20000}。
\frac{20000-3589}{20000}-\frac{29.36}{100}-\frac{4.08}{100}
由于 \frac{20000}{20000} 和 \frac{3589}{20000} 具有相同的分母,可通过分子相减来求差。
\frac{16411}{20000}-\frac{29.36}{100}-\frac{4.08}{100}
将 20000 减去 3589,得到 16411。
\frac{16411}{20000}-\frac{2936}{10000}-\frac{4.08}{100}
将分子和分母同时乘以 100 以展开 \frac{29.36}{100}。
\frac{16411}{20000}-\frac{367}{1250}-\frac{4.08}{100}
通过求根和消去 8,将分数 \frac{2936}{10000} 降低为最简分数。
\frac{16411}{20000}-\frac{5872}{20000}-\frac{4.08}{100}
20000 和 1250 的最小公倍数是 20000。将 \frac{16411}{20000} 和 \frac{367}{1250} 转换为带分母 20000 的分数。
\frac{16411-5872}{20000}-\frac{4.08}{100}
由于 \frac{16411}{20000} 和 \frac{5872}{20000} 具有相同的分母,可通过分子相减来求差。
\frac{10539}{20000}-\frac{4.08}{100}
将 16411 减去 5872,得到 10539。
\frac{10539}{20000}-\frac{408}{10000}
将分子和分母同时乘以 100 以展开 \frac{4.08}{100}。
\frac{10539}{20000}-\frac{51}{1250}
通过求根和消去 8,将分数 \frac{408}{10000} 降低为最简分数。
\frac{10539}{20000}-\frac{816}{20000}
20000 和 1250 的最小公倍数是 20000。将 \frac{10539}{20000} 和 \frac{51}{1250} 转换为带分母 20000 的分数。
\frac{10539-816}{20000}
由于 \frac{10539}{20000} 和 \frac{816}{20000} 具有相同的分母,可通过分子相减来求差。
\frac{9723}{20000}
将 10539 减去 816,得到 9723。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}