跳到主要内容
因式分解
Tick mark Image
求值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

a+b=-1 ab=-6=-6
通过分组对表达式进行因式分解。首先,表达式需要重写成 -x^{2}+ax+bx+6。 若要查找 a 和 b,请设置要解决的系统。
1,-6 2,-3
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为负,因此负数的绝对值比正数大。 列出提供产品 -6 的所有此类整数对。
1-6=-5 2-3=-1
计算每对之和。
a=2 b=-3
该解答是总和为 -1 的对。
\left(-x^{2}+2x\right)+\left(-3x+6\right)
将 -x^{2}-x+6 改写为 \left(-x^{2}+2x\right)+\left(-3x+6\right)。
x\left(-x+2\right)+3\left(-x+2\right)
将 x 放在第二个组中的第一个和 3 中。
\left(-x+2\right)\left(x+3\right)
通过使用分布式属性分解出共同项 -x+2。
-x^{2}-x+6=0
可使用变换式 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 对二次多项式进行因式分解,其中 x_{1} 和 x_{2} 是二次方程式 ax^{2}+bx+c=0 的解。
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 6}}{2\left(-1\right)}
形式为 ax^{2}+bx+c=0 的所有方程式均可求解,方法是使用二次公式来求解: \frac{-b±\sqrt{b^{2}-4ac}}{2a}。此二次公式可得到两个解,一个是当 ± 取加号时的解,另一个是取减号时的解。
x=\frac{-\left(-1\right)±\sqrt{1+4\times 6}}{2\left(-1\right)}
求 -4 与 -1 的乘积。
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\left(-1\right)}
求 4 与 6 的乘积。
x=\frac{-\left(-1\right)±\sqrt{25}}{2\left(-1\right)}
将 24 加上 1。
x=\frac{-\left(-1\right)±5}{2\left(-1\right)}
取 25 的平方根。
x=\frac{1±5}{2\left(-1\right)}
-1 的相反数是 1。
x=\frac{1±5}{-2}
求 2 与 -1 的乘积。
x=\frac{6}{-2}
现在 ± 为加号时求公式 x=\frac{1±5}{-2} 的解。 将 5 加上 1。
x=-3
6 除以 -2。
x=-\frac{4}{-2}
现在 ± 为减号时求公式 x=\frac{1±5}{-2} 的解。 将 1 减去 5。
x=2
-4 除以 -2。
-x^{2}-x+6=-\left(x-\left(-3\right)\right)\left(x-2\right)
使用 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) 对原始表达式进行因式分解。将 x_{1} 替换为 -3,将 x_{2} 替换为 2。
-x^{2}-x+6=-\left(x+3\right)\left(x-2\right)
将所有表达式的形式从 p-\left(-q\right) 简化为 p+q。