求解 x 的值
x=-3
x=2
图表
共享
已复制到剪贴板
x^{2}+4x+4-3\left(x+2\right)-4=0
使用二项式定理 \left(a+b\right)^{2}=a^{2}+2ab+b^{2} 展开 \left(x+2\right)^{2}。
x^{2}+4x+4-3x-6-4=0
使用分配律将 -3 乘以 x+2。
x^{2}+x+4-6-4=0
合并 4x 和 -3x,得到 x。
x^{2}+x-2-4=0
将 4 减去 6,得到 -2。
x^{2}+x-6=0
将 -2 减去 4,得到 -6。
a+b=1 ab=-6
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}+x-6 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,6 -2,3
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -6 的所有此类整数对。
-1+6=5 -2+3=1
计算每对之和。
a=-2 b=3
该解答是总和为 1 的对。
\left(x-2\right)\left(x+3\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=2 x=-3
若要找到方程解,请解 x-2=0 和 x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
使用二项式定理 \left(a+b\right)^{2}=a^{2}+2ab+b^{2} 展开 \left(x+2\right)^{2}。
x^{2}+4x+4-3x-6-4=0
使用分配律将 -3 乘以 x+2。
x^{2}+x+4-6-4=0
合并 4x 和 -3x,得到 x。
x^{2}+x-2-4=0
将 4 减去 6,得到 -2。
x^{2}+x-6=0
将 -2 减去 4,得到 -6。
a+b=1 ab=1\left(-6\right)=-6
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx-6。 若要查找 a 和 b,请设置要解决的系统。
-1,6 -2,3
由于 ab 是负值,a 并且 b 具有相反的正负号。 a+b 为正,因此正数的绝对值比负数大。 列出提供产品 -6 的所有此类整数对。
-1+6=5 -2+3=1
计算每对之和。
a=-2 b=3
该解答是总和为 1 的对。
\left(x^{2}-2x\right)+\left(3x-6\right)
将 x^{2}+x-6 改写为 \left(x^{2}-2x\right)+\left(3x-6\right)。
x\left(x-2\right)+3\left(x-2\right)
将 x 放在第二个组中的第一个和 3 中。
\left(x-2\right)\left(x+3\right)
通过使用分布式属性分解出共同项 x-2。
x=2 x=-3
若要找到方程解,请解 x-2=0 和 x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
使用二项式定理 \left(a+b\right)^{2}=a^{2}+2ab+b^{2} 展开 \left(x+2\right)^{2}。
x^{2}+4x+4-3x-6-4=0
使用分配律将 -3 乘以 x+2。
x^{2}+x+4-6-4=0
合并 4x 和 -3x,得到 x。
x^{2}+x-2-4=0
将 4 减去 6,得到 -2。
x^{2}+x-6=0
将 -2 减去 4,得到 -6。
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,1 替换 b,并用 -6 替换 c。
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
对 1 进行平方运算。
x=\frac{-1±\sqrt{1+24}}{2}
求 -4 与 -6 的乘积。
x=\frac{-1±\sqrt{25}}{2}
将 24 加上 1。
x=\frac{-1±5}{2}
取 25 的平方根。
x=\frac{4}{2}
现在 ± 为加号时求公式 x=\frac{-1±5}{2} 的解。 将 5 加上 -1。
x=2
4 除以 2。
x=-\frac{6}{2}
现在 ± 为减号时求公式 x=\frac{-1±5}{2} 的解。 将 -1 减去 5。
x=-3
-6 除以 2。
x=2 x=-3
现已求得方程式的解。
x^{2}+4x+4-3\left(x+2\right)-4=0
使用二项式定理 \left(a+b\right)^{2}=a^{2}+2ab+b^{2} 展开 \left(x+2\right)^{2}。
x^{2}+4x+4-3x-6-4=0
使用分配律将 -3 乘以 x+2。
x^{2}+x+4-6-4=0
合并 4x 和 -3x,得到 x。
x^{2}+x-2-4=0
将 4 减去 6,得到 -2。
x^{2}+x-6=0
将 -2 减去 4,得到 -6。
x^{2}+x=6
将 6 添加到两侧。 任何数与零相加其值不变。
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
将 x 项的系数 1 除以 2 得 \frac{1}{2}。然后在等式两边同时加上 \frac{1}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
对 \frac{1}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}+x+\frac{1}{4}=\frac{25}{4}
将 \frac{1}{4} 加上 6。
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
因数 x^{2}+x+\frac{1}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
对方程两边同时取平方根。
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
化简。
x=2 x=-3
将等式的两边同时减去 \frac{1}{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}