跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

2x^{2}-2x-12=28
使用分配律将 2x+4 乘以 x-3,并组合同类项。
2x^{2}-2x-12-28=0
将方程式两边同时减去 28。
2x^{2}-2x-40=0
将 -12 减去 28,得到 -40。
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-40\right)}}{2\times 2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 2 替换 a,-2 替换 b,并用 -40 替换 c。
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-40\right)}}{2\times 2}
对 -2 进行平方运算。
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-40\right)}}{2\times 2}
求 -4 与 2 的乘积。
x=\frac{-\left(-2\right)±\sqrt{4+320}}{2\times 2}
求 -8 与 -40 的乘积。
x=\frac{-\left(-2\right)±\sqrt{324}}{2\times 2}
将 320 加上 4。
x=\frac{-\left(-2\right)±18}{2\times 2}
取 324 的平方根。
x=\frac{2±18}{2\times 2}
-2 的相反数是 2。
x=\frac{2±18}{4}
求 2 与 2 的乘积。
x=\frac{20}{4}
现在 ± 为加号时求公式 x=\frac{2±18}{4} 的解。 将 18 加上 2。
x=5
20 除以 4。
x=-\frac{16}{4}
现在 ± 为减号时求公式 x=\frac{2±18}{4} 的解。 将 2 减去 18。
x=-4
-16 除以 4。
x=5 x=-4
现已求得方程式的解。
2x^{2}-2x-12=28
使用分配律将 2x+4 乘以 x-3,并组合同类项。
2x^{2}-2x=28+12
将 12 添加到两侧。
2x^{2}-2x=40
28 与 12 相加,得到 40。
\frac{2x^{2}-2x}{2}=\frac{40}{2}
两边同时除以 2。
x^{2}+\left(-\frac{2}{2}\right)x=\frac{40}{2}
除以 2 是乘以 2 的逆运算。
x^{2}-x=\frac{40}{2}
-2 除以 2。
x^{2}-x=20
40 除以 2。
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=20+\left(-\frac{1}{2}\right)^{2}
将 x 项的系数 -1 除以 2 得 -\frac{1}{2}。然后在等式两边同时加上 -\frac{1}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-x+\frac{1}{4}=20+\frac{1}{4}
对 -\frac{1}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-x+\frac{1}{4}=\frac{81}{4}
将 \frac{1}{4} 加上 20。
\left(x-\frac{1}{2}\right)^{2}=\frac{81}{4}
因数 x^{2}-x+\frac{1}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
对方程两边同时取平方根。
x-\frac{1}{2}=\frac{9}{2} x-\frac{1}{2}=-\frac{9}{2}
化简。
x=5 x=-4
在等式两边同时加 \frac{1}{2}。