求解 x 的值 (复数求解)
x=-\sqrt{100\cos(\theta )-y^{2}}
x=\sqrt{100\cos(\theta )-y^{2}}
求解 y 的值 (复数求解)
y=-\sqrt{100\cos(\theta )-x^{2}}
y=\sqrt{100\cos(\theta )-x^{2}}
求解 x 的值
x=\sqrt{100\cos(\theta )-y^{2}}
x=-\sqrt{100\cos(\theta )-y^{2}}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{\pi \left(4n_{1}+3\right)}{2}\text{ and }\theta \leq \frac{\pi \left(4n_{1}+5\right)}{2}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{\pi \left(4n_{1}-1\right)}{2}\text{ and }\theta \leq \frac{\pi \left(4n_{1}+1\right)}{2}\right)\text{ and }|y|\leq 10\sqrt{\cos(\theta )}
求解 y 的值
y=\sqrt{100\cos(\theta )-x^{2}}
y=-\sqrt{100\cos(\theta )-x^{2}}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{\pi \left(4n_{1}+3\right)}{2}\text{ and }\theta \leq \frac{\pi \left(4n_{1}+5\right)}{2}\right)\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \frac{\pi \left(4n_{1}-1\right)}{2}\text{ and }\theta \leq \frac{\pi \left(4n_{1}+1\right)}{2}\right)\text{ and }|x|\leq 10\sqrt{\cos(\theta )}
图表
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}