求解 h 的值
h=-\frac{27-6^{x}-x^{2}}{x\left(x-7\right)\left(x-1\right)}
x\neq 1\text{ and }x\neq 7\text{ and }x\neq 0
图表
共享
已复制到剪贴板
hx\left(x-7\right)\left(x-1\right)=x^{2}+6^{x}-27
将方程式的两边同时乘以 \left(x-7\right)\left(x-1\right)。
\left(hx^{2}-7hx\right)\left(x-1\right)=x^{2}+6^{x}-27
使用分配律将 hx 乘以 x-7。
hx^{3}-8hx^{2}+7hx=x^{2}+6^{x}-27
使用分配律将 hx^{2}-7hx 乘以 x-1,并组合同类项。
\left(x^{3}-8x^{2}+7x\right)h=x^{2}+6^{x}-27
合并所有含 h 的项。
\frac{\left(x^{3}-8x^{2}+7x\right)h}{x^{3}-8x^{2}+7x}=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
两边同时除以 -8x^{2}+x^{3}+7x。
h=\frac{x^{2}+6^{x}-27}{x^{3}-8x^{2}+7x}
除以 -8x^{2}+x^{3}+7x 是乘以 -8x^{2}+x^{3}+7x 的逆运算。
h=\frac{x^{2}+6^{x}-27}{x\left(x-7\right)\left(x-1\right)}
x^{2}+6^{x}-27 除以 -8x^{2}+x^{3}+7x。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}