求解 a 的值
\left\{\begin{matrix}a=\frac{\sqrt[3]{\frac{3\tan(\theta )}{\theta }}}{n}\text{, }&n\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\a\in \mathrm{R}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\left(n=0\text{ or }\theta =0\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right.
求解 n 的值
\left\{\begin{matrix}n=\frac{\sqrt[3]{\frac{3\tan(\theta )}{\theta }}}{a}\text{, }&a\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\theta \neq 0\\n\in \mathrm{R}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}\text{ and }\left(a=0\text{ or }\theta =0\right)\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\theta =\pi n_{2}\text{, }not(n_{2}=0)\end{matrix}\right.
图表
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}