求解 x, a, b 的值 (复数求解)
x=0\text{, }a=0\text{, }b=0
x=1\text{, }a=\frac{\sqrt{5}+1}{2}\approx 1.618033989\text{, }b=\frac{1-\sqrt{5}}{2}\approx -0.618033989
x=1\text{, }a=\frac{1-\sqrt{5}}{2}\approx -0.618033989\text{, }b=\frac{\sqrt{5}+1}{2}\approx 1.618033989
x=1\text{, }a=\frac{1}{2}+\frac{1}{2}i=0.5+0.5i\text{, }b=\frac{1}{2}-\frac{1}{2}i=0.5-0.5i
x=1\text{, }a=\frac{1}{2}-\frac{1}{2}i=0.5-0.5i\text{, }b=\frac{1}{2}+\frac{1}{2}i=0.5+0.5i
x=-\frac{2}{3}\approx -0.666666667\text{, }a=-1\text{, }b=\frac{1}{3}\approx 0.333333333
x=1\text{, }a=-1\text{, }b=1
x=\frac{-\sqrt{5}-1}{2}\approx -1.618033989\text{, }a=\frac{\sqrt{5}+1}{2}\approx 1.618033989\text{, }b=1
x=\frac{\sqrt{5}-1}{2}\approx 0.618033989\text{, }a=\frac{1-\sqrt{5}}{2}\approx -0.618033989\text{, }b=1
x=1\text{, }a=-1\text{, }b=-\frac{1}{2}=-0.5
x=-\frac{1}{2}-\frac{1}{2}i=-0.5-0.5i\text{, }a=\frac{1}{2}+\frac{1}{2}i=0.5+0.5i\text{, }b=-\frac{1}{2}=-0.5
x=-\frac{1}{2}+\frac{1}{2}i=-0.5+0.5i\text{, }a=\frac{1}{2}-\frac{1}{2}i=0.5-0.5i\text{, }b=-\frac{1}{2}=-0.5
求解 x, a, b 的值
x=0\text{, }a=0\text{, }b=0
x=1\text{, }a=\frac{\sqrt{5}+1}{2}\approx 1.618033989\text{, }b=\frac{1-\sqrt{5}}{2}\approx -0.618033989
x=1\text{, }a=\frac{1-\sqrt{5}}{2}\approx -0.618033989\text{, }b=\frac{\sqrt{5}+1}{2}\approx 1.618033989
x=-\frac{2}{3}\approx -0.666666667\text{, }a=-1\text{, }b=\frac{1}{3}\approx 0.333333333
x=1\text{, }a=-1\text{, }b=1
x=\frac{-\sqrt{5}-1}{2}\approx -1.618033989\text{, }a=\frac{\sqrt{5}+1}{2}\approx 1.618033989\text{, }b=1
x=\frac{\sqrt{5}-1}{2}\approx 0.618033989\text{, }a=\frac{1-\sqrt{5}}{2}\approx -0.618033989\text{, }b=1
x=1\text{, }a=-1\text{, }b=-\frac{1}{2}=-0.5
图表
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}