求解 x 的值
x=3
x=4
图表
共享
已复制到剪贴板
3x^{2}-13x+12=\left(x-3\right)\times 2x
使用分配律将 x-3 乘以 3x-4,并组合同类项。
3x^{2}-13x+12=\left(2x-6\right)x
使用分配律将 x-3 乘以 2。
3x^{2}-13x+12=2x^{2}-6x
使用分配律将 2x-6 乘以 x。
3x^{2}-13x+12-2x^{2}=-6x
将方程式两边同时减去 2x^{2}。
x^{2}-13x+12=-6x
合并 3x^{2} 和 -2x^{2},得到 x^{2}。
x^{2}-13x+12+6x=0
将 6x 添加到两侧。
x^{2}-7x+12=0
合并 -13x 和 6x,得到 -7x。
a+b=-7 ab=12
若要解公式,请使用公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) x^{2}-7x+12 因子。 若要查找 a 和 b,请设置要解决的系统。
-1,-12 -2,-6 -3,-4
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 12 的所有此类整数对。
-1-12=-13 -2-6=-8 -3-4=-7
计算每对之和。
a=-4 b=-3
该解答是总和为 -7 的对。
\left(x-4\right)\left(x-3\right)
使用获取的值 \left(x+a\right)\left(x+b\right) 重写因式分解表达式。
x=4 x=3
若要找到方程解,请解 x-4=0 和 x-3=0.
3x^{2}-13x+12=\left(x-3\right)\times 2x
使用分配律将 x-3 乘以 3x-4,并组合同类项。
3x^{2}-13x+12=\left(2x-6\right)x
使用分配律将 x-3 乘以 2。
3x^{2}-13x+12=2x^{2}-6x
使用分配律将 2x-6 乘以 x。
3x^{2}-13x+12-2x^{2}=-6x
将方程式两边同时减去 2x^{2}。
x^{2}-13x+12=-6x
合并 3x^{2} 和 -2x^{2},得到 x^{2}。
x^{2}-13x+12+6x=0
将 6x 添加到两侧。
x^{2}-7x+12=0
合并 -13x 和 6x,得到 -7x。
a+b=-7 ab=1\times 12=12
要求解公式,请通过分组对左侧进行因式分解。首先,左侧需要重写成 x^{2}+ax+bx+12。 若要查找 a 和 b,请设置要解决的系统。
-1,-12 -2,-6 -3,-4
由于 ab 是正数,a 并且 b 具有相同的符号。 因为 a+b 是负值,所以 a 和 b 均为负。 列出提供产品 12 的所有此类整数对。
-1-12=-13 -2-6=-8 -3-4=-7
计算每对之和。
a=-4 b=-3
该解答是总和为 -7 的对。
\left(x^{2}-4x\right)+\left(-3x+12\right)
将 x^{2}-7x+12 改写为 \left(x^{2}-4x\right)+\left(-3x+12\right)。
x\left(x-4\right)-3\left(x-4\right)
将 x 放在第二个组中的第一个和 -3 中。
\left(x-4\right)\left(x-3\right)
通过使用分布式属性分解出共同项 x-4。
x=4 x=3
若要找到方程解,请解 x-4=0 和 x-3=0.
3x^{2}-13x+12=\left(x-3\right)\times 2x
使用分配律将 x-3 乘以 3x-4,并组合同类项。
3x^{2}-13x+12=\left(2x-6\right)x
使用分配律将 x-3 乘以 2。
3x^{2}-13x+12=2x^{2}-6x
使用分配律将 2x-6 乘以 x。
3x^{2}-13x+12-2x^{2}=-6x
将方程式两边同时减去 2x^{2}。
x^{2}-13x+12=-6x
合并 3x^{2} 和 -2x^{2},得到 x^{2}。
x^{2}-13x+12+6x=0
将 6x 添加到两侧。
x^{2}-7x+12=0
合并 -13x 和 6x,得到 -7x。
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,-7 替换 b,并用 12 替换 c。
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
对 -7 进行平方运算。
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
求 -4 与 12 的乘积。
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
将 -48 加上 49。
x=\frac{-\left(-7\right)±1}{2}
取 1 的平方根。
x=\frac{7±1}{2}
-7 的相反数是 7。
x=\frac{8}{2}
现在 ± 为加号时求公式 x=\frac{7±1}{2} 的解。 将 1 加上 7。
x=4
8 除以 2。
x=\frac{6}{2}
现在 ± 为减号时求公式 x=\frac{7±1}{2} 的解。 将 7 减去 1。
x=3
6 除以 2。
x=4 x=3
现已求得方程式的解。
3x^{2}-13x+12=\left(x-3\right)\times 2x
使用分配律将 x-3 乘以 3x-4,并组合同类项。
3x^{2}-13x+12=\left(2x-6\right)x
使用分配律将 x-3 乘以 2。
3x^{2}-13x+12=2x^{2}-6x
使用分配律将 2x-6 乘以 x。
3x^{2}-13x+12-2x^{2}=-6x
将方程式两边同时减去 2x^{2}。
x^{2}-13x+12=-6x
合并 3x^{2} 和 -2x^{2},得到 x^{2}。
x^{2}-13x+12+6x=0
将 6x 添加到两侧。
x^{2}-7x+12=0
合并 -13x 和 6x,得到 -7x。
x^{2}-7x=-12
将方程式两边同时减去 12。 零减去任何数都等于该数的相反数。
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
将 x 项的系数 -7 除以 2 得 -\frac{7}{2}。然后在等式两边同时加上 -\frac{7}{2} 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
对 -\frac{7}{2} 进行平方运算,方法是同时对该分数的分子和分母进行平方运算。
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
将 \frac{49}{4} 加上 -12。
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
因数 x^{2}-7x+\frac{49}{4}。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
对方程两边同时取平方根。
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
化简。
x=4 x=3
在等式两边同时加 \frac{7}{2}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}