求解 n, θ, o, p 的值
\theta =\frac{-\arccos(p)+2\pi n_{2}}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }\left(2\pi n_{2}<0\text{ or }2\pi n_{2}>\pi \text{ or }p\neq 1\right)\text{ and }\left(p\neq 1\text{ or }n_{2}\neq 0\right)\text{, }n=\frac{\sqrt{3}}{3\theta }\text{, }o=p\text{, }p\in \begin{bmatrix}-1,1\end{bmatrix}\text{; }\theta =\frac{\arccos(p)+2\pi n_{1}}{2}\text{, }n_{1}\in \mathrm{Z}\text{, }\left(-2\pi n_{1}<0\text{ or }-2\pi n_{1}>\pi \text{ or }p\neq 1\right)\text{ and }\left(p\neq 1\text{ or }n_{1}\neq 0\right)\text{, }n=\frac{\sqrt{3}}{3\theta }\text{, }o=p\text{, }p\in \begin{bmatrix}-1,1\end{bmatrix}\text{, }|p|\leq 1
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}