求解 x, y, z, a, b, c 的值
x=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394\text{, }y=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394\text{, }z=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394\text{, }a=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394\text{, }b=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394\text{, }c=\frac{8\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})}{3}\approx 4.11958394
x=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752\text{, }y=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752\text{, }z=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752\text{, }a=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752\text{, }b=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752\text{, }c=\frac{4\left(-\sqrt{3}\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-3\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -3.868595752
x=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189\text{, }y=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189\text{, }z=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189\text{, }a=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189\text{, }b=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189\text{, }c=\frac{4\sqrt{3}\left(\sqrt{3}\sin(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})-\cos(\frac{\arccos(\frac{3\sqrt{3}}{32})}{3})\right)}{3}\approx -0.250988189
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}