\left\{ \begin{array} { l } { y \leq - 2 x ^ { 2 } + 12 x - 6 } \\ { y \geq x ^ { 2 } + x - 12 } \end{array} \right.
求解 x 的值
\left\{\begin{matrix}x=3\text{, }&y\geq 0\text{ and }y\leq 12\\x=\frac{\sqrt{4y+49}-1}{2}\text{, }&y=\frac{-7\sqrt{193}-13}{9}\\x\in \begin{bmatrix}\frac{-\sqrt{4y+49}-1}{2},\frac{\sqrt{24-2y}}{2}+3\end{bmatrix}\text{, }&-\frac{\sqrt{96-8y}}{4}+3<\frac{-\sqrt{4y+49}-1}{2}\text{ and }\frac{\sqrt{96-8y}}{4}+3\leq \frac{\sqrt{4y+49}-1}{2}\text{ and }y<12\text{ and }y>-\frac{49}{4}\\x\in \begin{bmatrix}-\frac{\sqrt{24-2y}}{2}+3,\frac{\sqrt{24-2y}}{2}+3\end{bmatrix}\text{, }&-\frac{\sqrt{96-8y}}{4}+3\geq \frac{-\sqrt{4y+49}-1}{2}\text{ and }\frac{\sqrt{96-8y}}{4}+3\leq \frac{\sqrt{4y+49}-1}{2}\text{ and }y<12\text{ and }y>-\frac{49}{4}\\x\in \begin{bmatrix}\frac{-\sqrt{4y+49}-1}{2},\frac{\sqrt{4y+49}-1}{2}\end{bmatrix}\text{, }&\frac{\sqrt{4y+49}-1}{2}<\frac{\sqrt{96-8y}}{4}+3\text{ and }-\frac{\sqrt{96-8y}}{4}+3<\frac{-\sqrt{4y+49}-1}{2}\text{ and }y>-\frac{49}{4}\text{ and }y<12\\x\in \begin{bmatrix}-\frac{\sqrt{24-2y}}{2}+3,\frac{\sqrt{4y+49}-1}{2}\end{bmatrix}\text{, }&-\frac{\sqrt{96-8y}}{4}+3\geq \frac{-\sqrt{4y+49}-1}{2}\text{ and }-\frac{\sqrt{96-8y}}{4}+3<\frac{\sqrt{4y+49}-1}{2}\text{ and }\frac{\sqrt{4y+49}-1}{2}<\frac{\sqrt{96-8y}}{4}+3\text{ and }y<12\text{ and }y>-\frac{49}{4}\end{matrix}\right.
求解 y 的值
y\in \begin{bmatrix}x^{2}+x-12,-2x^{2}+12x-6\end{bmatrix}\text{, }x\geq \frac{11-\sqrt{193}}{6}\text{ and }x\leq \frac{\sqrt{193}+11}{6}
图表
共享
已复制到剪贴板
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}