\left\{ \begin{array} { l } { 30 x + 15 y = 675 } \\ { 42 x + 20 y = 940 } \end{array} \right.
求解 x, y 的值
x=20
y=5
图表
共享
已复制到剪贴板
30x+15y=675,42x+20y=940
要使用代入法解一对方程式,则先要对其中一个方程式求解一个变量。然后用所得解替换另一个方程式的同一个变量。
30x+15y=675
选择其中一个方程式并对 x 进行求解,方法是进行移项,使等号左边仅留 x。
30x=-15y+675
将等式的两边同时减去 15y。
x=\frac{1}{30}\left(-15y+675\right)
两边同时除以 30。
x=-\frac{1}{2}y+\frac{45}{2}
求 \frac{1}{30} 与 -15y+675 的乘积。
42\left(-\frac{1}{2}y+\frac{45}{2}\right)+20y=940
用 \frac{-y+45}{2} 替换另一个方程式中 42x+20y=940 中的 x。
-21y+945+20y=940
求 42 与 \frac{-y+45}{2} 的乘积。
-y+945=940
将 20y 加上 -21y。
-y=-5
将等式的两边同时减去 945。
y=5
两边同时除以 -1。
x=-\frac{1}{2}\times 5+\frac{45}{2}
用 5 替换 x=-\frac{1}{2}y+\frac{45}{2} 中的 y。由于所得方程式中仅包含一个变量,因此可以直接求得 x 的解。
x=\frac{-5+45}{2}
求 -\frac{1}{2} 与 5 的乘积。
x=20
将 -\frac{5}{2} 加上 \frac{45}{2},计算方法是寻找公分母,加上各自的分子。然后将所得分数进行约分化为最简分数。
x=20,y=5
系统现在已得到解决。
30x+15y=675,42x+20y=940
将等式化为标准形式,然后使用矩阵求解方程组。
\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}675\\940\end{matrix}\right)
将方程式表示为矩阵形式。
inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}30&15\\42&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
用 \left(\begin{matrix}30&15\\42&20\end{matrix}\right) 的逆矩阵左乘公式。
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
矩阵及其逆的乘积为单位矩阵。
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}30&15\\42&20\end{matrix}\right))\left(\begin{matrix}675\\940\end{matrix}\right)
将等号左边的矩阵相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{30\times 20-15\times 42}&-\frac{15}{30\times 20-15\times 42}\\-\frac{42}{30\times 20-15\times 42}&\frac{30}{30\times 20-15\times 42}\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
对于 2\times 2 矩阵 \left(\begin{matrix}a&b\\c&d\end{matrix}\right),其逆矩阵为 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right),所以矩阵方程可以重写为矩阵乘法问题。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&\frac{1}{2}\\\frac{7}{5}&-1\end{matrix}\right)\left(\begin{matrix}675\\940\end{matrix}\right)
执行算术运算。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 675+\frac{1}{2}\times 940\\\frac{7}{5}\times 675-940\end{matrix}\right)
矩阵相乘。
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\5\end{matrix}\right)
执行算术运算。
x=20,y=5
提取矩阵元素 x 和 y。
30x+15y=675,42x+20y=940
为了通过消除项来求解,必须使两个方程式中某个变量的系数相同以便使用一个等式减去另一个等式时,该变量可被消去。
42\times 30x+42\times 15y=42\times 675,30\times 42x+30\times 20y=30\times 940
要让 30x 和 42x 相等,将第一个等式的两边所有项乘以 42,再将第二个等式两边的所有项乘以 30。
1260x+630y=28350,1260x+600y=28200
化简。
1260x-1260x+630y-600y=28350-28200
用 1260x+630y=28350 减去 1260x+600y=28200,运算方法是在两个等式的等号两边分别进行同类项减法运算。
630y-600y=28350-28200
将 -1260x 加上 1260x。 项 1260x 和 -1260x 消去,剩下一个仅含一个变量的可求解的方程式。
30y=28350-28200
将 -600y 加上 630y。
30y=150
将 -28200 加上 28350。
y=5
两边同时除以 30。
42x+20\times 5=940
用 5 替换 42x+20y=940 中的 y。由于所得方程式中仅包含一个变量,因此可以直接求得 x 的解。
42x+100=940
求 20 与 5 的乘积。
42x=840
将等式的两边同时减去 100。
x=20
两边同时除以 42。
x=20,y=5
系统现在已得到解决。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}