求值
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}+С
关于 x 的微分
x^{2}\left(x+1\right)^{3}
共享
已复制到剪贴板
\int x^{2}\left(x^{3}+3x^{2}+3x+1\right)\mathrm{d}x
使用二项式定理 \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} 展开 \left(x+1\right)^{3}。
\int x^{5}+3x^{4}+3x^{3}+x^{2}\mathrm{d}x
使用分配律将 x^{2} 乘以 x^{3}+3x^{2}+3x+1。
\int x^{5}\mathrm{d}x+\int 3x^{4}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
逐项积分求和。
\int x^{5}\mathrm{d}x+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
在项末因式分解出常数。
\frac{x^{6}}{6}+3\int x^{4}\mathrm{d}x+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
由于 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 用于 k\neq -1,请将 \int x^{5}\mathrm{d}x 替换为 \frac{x^{6}}{6}。
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+3\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x
由于 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 用于 k\neq -1,请将 \int x^{4}\mathrm{d}x 替换为 \frac{x^{5}}{5}。 求 3 与 \frac{x^{5}}{5} 的乘积。
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\int x^{2}\mathrm{d}x
由于 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 用于 k\neq -1,请将 \int x^{3}\mathrm{d}x 替换为 \frac{x^{4}}{4}。 求 3 与 \frac{x^{4}}{4} 的乘积。
\frac{x^{6}}{6}+\frac{3x^{5}}{5}+\frac{3x^{4}}{4}+\frac{x^{3}}{3}
由于 \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} 用于 k\neq -1,请将 \int x^{2}\mathrm{d}x 替换为 \frac{x^{3}}{3}。
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}
化简。
\frac{x^{3}}{3}+\frac{3x^{4}}{4}+\frac{3x^{5}}{5}+\frac{x^{6}}{6}+С
如果 F\left(x\right) 是 f\left(x\right) 的就,则 f\left(x\right) 的所有 antiderivatives 的集合都由 F\left(x\right)+C 提供。因此,将集成 C\in \mathrm{R} 的常数添加到结果中。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}