求值
\frac{71\sqrt{10}}{40}\approx 5.613042847
共享
已复制到剪贴板
\frac{7.1}{\sqrt{\frac{6.5}{8}+\frac{6.3}{8}}}
将 85.3 减去 78.2,得到 7.1。
\frac{7.1}{\sqrt{\frac{65}{80}+\frac{6.3}{8}}}
将分子和分母同时乘以 10 以展开 \frac{6.5}{8}。
\frac{7.1}{\sqrt{\frac{13}{16}+\frac{6.3}{8}}}
通过求根和消去 5,将分数 \frac{65}{80} 降低为最简分数。
\frac{7.1}{\sqrt{\frac{13}{16}+\frac{63}{80}}}
将分子和分母同时乘以 10 以展开 \frac{6.3}{8}。
\frac{7.1}{\sqrt{\frac{65}{80}+\frac{63}{80}}}
16 和 80 的最小公倍数是 80。将 \frac{13}{16} 和 \frac{63}{80} 转换为带分母 80 的分数。
\frac{7.1}{\sqrt{\frac{65+63}{80}}}
由于 \frac{65}{80} 和 \frac{63}{80} 具有相同的分母,可通过分子相加来求和。
\frac{7.1}{\sqrt{\frac{128}{80}}}
65 与 63 相加,得到 128。
\frac{7.1}{\sqrt{\frac{8}{5}}}
通过求根和消去 16,将分数 \frac{128}{80} 降低为最简分数。
\frac{7.1}{\frac{\sqrt{8}}{\sqrt{5}}}
重写除法 \sqrt{\frac{8}{5}} 的平方根作为平方根 \frac{\sqrt{8}}{\sqrt{5}} 的除法。
\frac{7.1}{\frac{2\sqrt{2}}{\sqrt{5}}}
因式分解 8=2^{2}\times 2。 将乘积 \sqrt{2^{2}\times 2} 的平方根重写为平方根 \sqrt{2^{2}}\sqrt{2} 的乘积。 取 2^{2} 的平方根。
\frac{7.1}{\frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
通过将分子和分母乘以 \sqrt{5},使 \frac{2\sqrt{2}}{\sqrt{5}} 的分母有理化
\frac{7.1}{\frac{2\sqrt{2}\sqrt{5}}{5}}
\sqrt{5} 的平方是 5。
\frac{7.1}{\frac{2\sqrt{10}}{5}}
若要将 \sqrt{2} 和 \sqrt{5} 相乘,请将数字从平方根下相乘。
\frac{7.1\times 5}{2\sqrt{10}}
7.1 除以 \frac{2\sqrt{10}}{5} 的计算方法是用 7.1 乘以 \frac{2\sqrt{10}}{5} 的倒数。
\frac{7.1\times 5\sqrt{10}}{2\left(\sqrt{10}\right)^{2}}
通过将分子和分母乘以 \sqrt{10},使 \frac{7.1\times 5}{2\sqrt{10}} 的分母有理化
\frac{7.1\times 5\sqrt{10}}{2\times 10}
\sqrt{10} 的平方是 10。
\frac{35.5\sqrt{10}}{2\times 10}
将 7.1 与 5 相乘,得到 35.5。
\frac{35.5\sqrt{10}}{20}
将 2 与 10 相乘,得到 20。
1.775\sqrt{10}
35.5\sqrt{10} 除以 20 得 1.775\sqrt{10}。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}