跳到主要内容
求解 x 的值
Tick mark Image
图表

来自 Web 搜索的类似问题

共享

\left(x+2\right)\left(x-4\right)=1\times 1
由于无法定义除以零,因此变量 x 不能等于任意以下值: -3,-2。 将公式两边同时乘以 \left(x+2\right)\left(x+3\right) 的最小公倍数 x+3,x^{2}+5x+6。
x^{2}-2x-8=1\times 1
使用分配律将 x+2 乘以 x-4,并组合同类项。
x^{2}-2x-8=1
将 1 与 1 相乘,得到 1。
x^{2}-2x-8-1=0
将方程式两边同时减去 1。
x^{2}-2x-9=0
将 -8 减去 1,得到 -9。
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
此公式采用标准形式: ax^{2}+bx+c=0。在二次公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} 中用 1 替换 a,-2 替换 b,并用 -9 替换 c。
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
对 -2 进行平方运算。
x=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
求 -4 与 -9 的乘积。
x=\frac{-\left(-2\right)±\sqrt{40}}{2}
将 36 加上 4。
x=\frac{-\left(-2\right)±2\sqrt{10}}{2}
取 40 的平方根。
x=\frac{2±2\sqrt{10}}{2}
-2 的相反数是 2。
x=\frac{2\sqrt{10}+2}{2}
现在 ± 为加号时求公式 x=\frac{2±2\sqrt{10}}{2} 的解。 将 2\sqrt{10} 加上 2。
x=\sqrt{10}+1
2+2\sqrt{10} 除以 2。
x=\frac{2-2\sqrt{10}}{2}
现在 ± 为减号时求公式 x=\frac{2±2\sqrt{10}}{2} 的解。 将 2 减去 2\sqrt{10}。
x=1-\sqrt{10}
2-2\sqrt{10} 除以 2。
x=\sqrt{10}+1 x=1-\sqrt{10}
现已求得方程式的解。
\left(x+2\right)\left(x-4\right)=1\times 1
由于无法定义除以零,因此变量 x 不能等于任意以下值: -3,-2。 将公式两边同时乘以 \left(x+2\right)\left(x+3\right) 的最小公倍数 x+3,x^{2}+5x+6。
x^{2}-2x-8=1\times 1
使用分配律将 x+2 乘以 x-4,并组合同类项。
x^{2}-2x-8=1
将 1 与 1 相乘,得到 1。
x^{2}-2x=1+8
将 8 添加到两侧。
x^{2}-2x=9
1 与 8 相加,得到 9。
x^{2}-2x+1=9+1
将 x 项的系数 -2 除以 2 得 -1。然后在等式两边同时加上 -1 的平方。这一运算步骤让等式的左边成为完全平方形式。
x^{2}-2x+1=10
将 1 加上 9。
\left(x-1\right)^{2}=10
因数 x^{2}-2x+1。一般说来,当 x^{2}+bx+c 是一个平方数时,它始终可以分解为 \left(x+\frac{b}{2}\right)^{2}。
\sqrt{\left(x-1\right)^{2}}=\sqrt{10}
对方程两边同时取平方根。
x-1=\sqrt{10} x-1=-\sqrt{10}
化简。
x=\sqrt{10}+1 x=1-\sqrt{10}
在等式两边同时加 1。