求值
s^{11}
关于 s 的微分
11s^{10}
共享
已复制到剪贴板
\frac{s^{9}}{s^{2}s^{-4}}
将 s 与 s 相乘,得到 s^{2}。
\frac{s^{9}}{s^{-2}}
同底的幂相乘,即将其指数相加。2 加 -4 得 -2。
s^{11}
同底的幂相除,即将分子的指数减去分母的指数。9 减 -2 得 11。
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{s^{4}}{s}s^{9-1})
底相同的幂相除,运算方法是底不变,指数为分子的指数减去分母的指数所得的值。
\frac{\mathrm{d}}{\mathrm{d}s}(s^{3}s^{8})
执行算术运算。
8s^{3}s^{8-1}
多项式的导数是其各项的导数之和。常数项的导数是 0。ax^{n} 的导数是 nax^{n-1}。
8s^{3}s^{7}
执行算术运算。
示例
二次方程式
{ x } ^ { 2 } - 4 x - 5 = 0
三角学
4 \sin \theta \cos \theta = 2 \sin \theta
线性方程
y = 3x + 4
算术
699 * 533
矩阵
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
联立方程
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
积分
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限制
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}